A
|:|,.‘|‘-

-

1]

g the

S S :
— =
= £

P S =
— -
fimcmmreen) m m
D = £
o S §
= :

e \ o G /

-.r.- = -..I )
AR ST T e T.il‘liﬂiﬂrﬂ.ﬂv ’
1. Vi b

il e




CONTENTS IN DETAIL

FOREWORD
ACKNOWLEDGMENTS

INTRODUCTION

This Book’s Approach
Who This Book Is For

Kali Linux

How This Book Is Organized

Contact

PART I: THE IOT THREAT LANDSCAPE

CHAPTER 1: THE IOT SECURITY WORLD
Why Is 10T Security Important?

How Is 10T Security Different than Traditional IT Security?
What's Special About IoT Hacking?
Frameworks, Standards, and Guides

Case Study: Finding, Reporting, and Disclosing an 10T Security Issue

Expert Perspectives: Navigating the I0T Landscape
loT Hacking Laws

The Role of Government in 10T Security

Patient Perspectives on Medical Device Security
Conclusion

CHAPTER 2: THREAT MODELING

Threat Modeling for IoT
Following a Framework for Threat Modeling

Identifying the Architecture
Breaking the Architecture into Components
Identifying Threats




Using Attack Trees to Uncover Threats
Rating Threats with the DREAD Classification Scheme

Other Types of Threat Modeling, Frameworks, and Tools
Common loT Threats

Signal Jamming Attacks

Replay Attacks

Settings Tampering Attacks

Hardware Integrity Attacks

Node Clonin
Security and Privacy Breaches

User Security Awareness
Conclusion

CHAPTER 3: A SECURITY TESTING METHODOLOGY
Passive Reconnaissance

The Physical or Hardware Layer
Peripheral Interfaces

Boot Environment
Locks

Tamper Protection and Detection
Firmware

Debug Interfaces
Physical Robustness

The Network Layer
Reconnaissance

Network Protocol and Service Attacks
Wireless Protocol Testing
Web Application Assessment

Application Mapping
Client-Side Controls

Authentication

Session Management
Access Controls and Authorization




Input Validation
Logic Flaws

Application Server
Host Configuration Review

User Accounts
Password Strength

Account Privileges
Patch Levels

Remote Maintenance
Filesystem Access Controls

Data Encryption
Server Misconfiguration

Mobile Application and Cloud Testing
Conclusion

PART II: NETWORK HACKING

CHAPTER 4: NETWORK ASSESSMENTS

Hopping into the 10T Network
VLANSs and Network Switches
Switch Spoofing
Double Tagging
Imitating VolP Devices
Identifying 10T Devices on the Network

Uncovering Passwords by Fingerprinting Services
Writing New Nmap Service Probes

Attacking MQTT

Setting Up a Test Environment

Writing the MQTT Authentication-Cracking Module in Ncrack
Testing the Ncrack Module Against MOTT

Conclusion

CHAPTER 5: ANALYZING NETWORK PROTOCOLS
Inspecting Network Protocols



Information Gathering
Analysis
Prototyping and Tool Development
Conducting a Security Assessment
Developing a Lua Wireshark Dissector for the DICOM Protocol
Working with Lua

Understanding the DICOM Protocol
Generating DICOM Traffic
Enabling Lua in Wireshark
Defining the Dissector
Defining the Main Protocol Dissector Function
Completing the Dissector
Building a C-ECHO Requests Dissector
Extracting the String Values of the Application Entity Titles
Populating the Dissector Function
Parsing Variable-Length Fields
Testing the Dissector
Writing a DICOM Service Scanner for the Nmap Scripting Engine

Writing an Nmap Scripting Engine Library for DICOM
DICOM Codes and Constants

Writing Socket Creation and Destruction Functions

Defining Functions for Sending and Receiving DICOM Packets
Creating DICOM Packet Headers

Writing the A-ASSOCIATE Requests Message Contexts
Reading Script Arguments in the Nmap Scripting Engine
Defining the A-ASSOCIATE Request Structure

Parsing A-ASSOCIATE Responses
Writing the Final Script

Conclusion

CHAPTER 6: EXPLOITING ZERO-CONFIGURATION NETWORKING

Exploiting UPnP
The UPnP Stack




Common UPnP Vulnerabilities
Punching Holes Through Firewalls

Abusing UPnP Through WAN interfaces
Other UPnP Attacks

Exploiting mDNS and DNS-SD
How mDNS Works
How DNS-SD Works
Conducting Reconnaissance with mDNS and DNS-SD

Abusing the mDNS Probing Phase
MDNS and DNS-SD Man-in-the-Middle Attacks

Exploiting WS-Discovery
How WS-Discovery Works

Faking Cameras on Your Network
Crafting WS-Discovery Attacks
Conclusion

PART lll: HARDWARE HACKING

CHAPTER 7: UART, JTAG, AND SWD EXPLOITATION
UART

Hardware Tools for Communicating with UART
Identifying UART Ports

Identifying the UART Baud Rate
JTAG and SWD

JTAG

How SWD Works

Hardware Tools for Communicating with JTAG and SWD
Identifying JTAG Pins

Hacking a Device Through UART and SWD
The STM32F103C8T6 (Black Pill) Target Device

Setting Up the Debugging Environment
Coding a Target Program in Arduino
Flashing and Running the Arduino Program
Debugging the Target




Conclusion

CHAPTER 8: SPI AND I2C
Hardware for Communicating with SPI and 12C
SPI
How SPI Works
Dumping EEPROM Flash Memory Chips with SPI
12C

How 12C Works

Setting Up a Controller-Peripheral 12C Bus Architecture
Attacking 12C with the Bus Pirate

Conclusion

CHAPTER 9: FIRMWARE HACKING

Firmware and Operating Systems
Obtaining Firmware

Hacking a Wi-Fi Modem Router
Extracting the Filesystem
Statically Analyzing the Filesystem Contents
Firmware Emulation

Dynamic Analysis
Backdooring Firmware

Targeting Firmware Update Mechanisms

Compilation and Setup
The Client Code

Running the Update Service

Vulnerabilities of Firmware Update Services
Conclusion

PART IV: RADIO HACKING

CHAPTER 10: SHORT RANGE RADIO: ABUSING RFID
How RFID Works

Radio Frequency Bands
Passive and Active RFID Technologies




The Structure of RFID Tags
Low-Frequency RFID Tags

High-Frequency RFID Tags
Attacking RFID Systems with Proxmark3
Setting Up Proxmark3
Updating Proxmark3
Identifying Low- and High-Frequency Cards

Low-Frequency Tag Cloning

High-Frequency Tag Cloning
Simulating RFID Tags

Altering RFID Tags

Attacking MIFARE with an Android App

RAW Commands for Nonbranded or Noncommercial RFID Tags
Eavesdropping on the Tag-to-Reader Communication

Extracting a Sector’s Key from the Captured Traffic

The Legitimate RFID Reader Attack

Automating RFID Attacks Using the Proxmark3 Scripting Engine

RFID Fuzzing Using Custom Scripting
Conclusion

CHAPTER 11: BLUETOOTH LOW ENERGY
How BLE Works
Generic Access Profile and Generic Attribute Profile
Working with BLE
BLE Hardware
BlueZ

Configuring BLE Interfaces
Discovering Devices and Listing Characteristics
GATTTool
Bettercap
Enumerating Characteristics, Services, and Descriptors
Reading and Writing Characteristics
BLE Hacking




Setting Up BLE CTF Infinity

Getting Started

Flag 1: Examining Characteristics and Descriptors
Flag 2: Authentication

Flag 3: Spoofing Your MAC Address
Conclusion

CHAPTER 12: MEDIUM RANGE RADIO: HACKING WI-FI

How Wi-Fi Works

Hardware for Wi-Fi Security Assessments

Wi-Fi Attacks Against Wireless Clients
Deauthentication and Denial-of-Service Attacks
Wi-Fi Assaociation Attacks
Wi-Fi Direct

Wi-Fi Attacks Against APs
Cracking WPA/WPA2

Cracking into WPA/WPAZ2 Enterprise to Capture Credentials

A Testing Methodology
Conclusion

CHAPTER 13: LONG RANGE RADIO: LPWAN
LPWAN, LoRa, and LoRaWAN
Capturing LoRa Traffic
Setting Up the Heltec LoRa 32 Development Board
Setting Up the LoStik
Turning the CatWAN USB Stick into a LoRa Sniffer

Decoding the LoRaWAN Protocol
The LoRaWAN Packet Format

Joining LoRaWAN Networks
Attacking LoRaWAN

Bit-Flipping Attacks
Key Generation and Management

Replay Attacks
Eavesdropping




ACK Spoofin

Application-Specific Attacks
Conclusion

PART V: TARGETING THE I0T ECOSYSTEM

CHAPTER 14: ATTACKING MOBILE APPLICATIONS
Threats in 10T Mobile Apps
Breaking Down the Architecture into Components
|dentifying Threats
Android and iOS Security Controls
Data Protection and Encrypted Filesystem
Application Sandbox, Secure IPC, and Services

Application Signatures
User Authentication

Isolated Hardware Components and Keys Management

Verified and Secure Boot

Analyzing iOS Applications
Preparing the Testing Environment
Extracting and Re-Signing an IPA

Static Analysis
Dynamic Analysis
Injection Attacks
Keychain Storage

Binary Reversing
Intercepting and Examining Network Traffic

Avoiding Jailbreak Detection Using Dynamic Patching

Avoiding Jailbreak Detection Using Static Patching
Analyzing Android Applications

Preparing the Test Environment

Extracting an APK

Static Analysis

Binary Reversing
Dynamic Analysis




Intercepting and Examining Network Traffic
Side-Channel Leaks

Avoid Root Detection Using Static Patching
Avoid Root Detection Using Dynamic Patching

Conclusion

CHAPTER 15: HACKING THE SMART HOME
Gaining Physical Entry to a Building
Cloning a Keylock System’s RFID Tag
Jamming the Wireless Alarm
Playing Back an |IP Camera Stream
Understanding Streaming Protocols
Analyzing IP_ Camera Network Traffic

Extracting the Video Stream
Attacking a Smart Treadmill

Smart Treadmills and the Android Operating System
Taking Control of the Android Powered Smart Treadmill

Conclusion

TOOLS FOR I0T HACKING

INDEX

Title Page
Table of Contents

Front Matter

Dedication

Foreword

Part I: The IoT Threat Landscape

Start Reading




PRACTICAL IOT HACKING

The Definitive Guide to Attacking the Internet of
Things

by Fotios Chantzis, loannis Stais, Paulino Calderon, Evangelos
Deirmentzoglou, and Beau Woods

no starch
press

San Francisco



PRACTICAL IOT HACKING. Copyright © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon,
Evangelos Deirmentzoglou, and Beau Woods.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0090-7 (print)
ISBN-13: 978-1-7185-0091-4 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Illustration: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Aaron Guzman
Copyeditor: Anne Marie Walker
Compositor: Jeff Wilson, Happenstance Type-O-Rama
Proofreader: Elizabeth Littrell
Indexer: BIM Creatives, LLC

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1-415-863-9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Chantzis, Fotios, author. | Stais, Ioannis, author. | Calderon,
Paulino, author. | Deirmentzoglou, Evangelos, author. | Woods, Beau,
author.

Title: Practical IoT hacking : the definitive guide to attacking the
internet of things / Fotios Chantzis, Ioannis Stais, Paulino Calderon,
Evangelos Deirmentzoglou, and Beau Woods.

Description: San Francisco : No Starch Press, Inc., 2020. | Includes index.

Identifiers: LCCN 2020029866 (print) | LCCN 2020029867 (ebook) | ISBN
9781718500907 | ISBN 9781718500914 (ebook)

Subjects: LCSH: Internet of things--Security measures. | Penetration
testing (Computer security)

Classification: LCC TK5105.8857 .C533 2020 (print) | LCC TK5105.8857
(ebook) | DDC 005.8/7--dc23

LC record available at https://lccn.loc.gov/2020029866

LC ebook record available at https://lccn.loc.gov/2020029867

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.



Dedicated to Klajdi and Miranta.



ABOUT THE AUTHORS

Fotios (Fotis) Chantzis (@ithilgore) is laying the foundation for a safe and secure
Artificial General Intelligence (AGI) at OpenAl. Previously, he worked as a principal
information security engineer at Mayo Clinic, where he managed and conducted
technical security assessments on medical devices, clinical support systems, and critical
healthcare infrastructure. He has been a member of the core Nmap development team
since 2009, when he wrote Ncrack under the mentorship of Gordon “Fyodor” Lyon, the
original author of Nmap, during the Google Summer of Code. He later worked as a
mentor for the Nmap project during the Google Summer of Code 2016 and 2017 and has
authored a video course about Nmap. His research on network security includes
exploiting the TCP Persist Timer (you can find his paper on the topic published in
Phrack #66) and inventing a stealthy port scanning attack by abusing XMPP. Fotis has
presented at notable security conferences, including DEF CON. Highlights of his work
can be found at his site https://sock-raw.org/.

Ioannis Stais (@Einstais) is a senior IT security researcher and head of red teaming at
CENSUS S.A., a company that offers specialized cybersecurity services to customers
worldwide. Ioannis has participated in more than 100 security assessment projects,
including the assessment of communication protocols, web and mobile banking services,
NFC payment systems, ATMs and point-of-sale systems, critical medical appliances, and
MDM solutions. He holds a master’s degree in computer systems technology from the
University of Athens. His research currently focuses on the development of machine
learning algorithms for improving vulnerability research, the enhancement of fuzzing
frameworks, and an exploration of the current threats in mobile and web applications.
He has presented his research at security conferences such as Black Hat Europe,
Troopers NGI, and Security BSides Athens.


http://www.twitter.com/@ithilgore
https://sock-raw.org/
http://www.twitter.com/@Einstais

ABOUT THE CO-AUTHORS

Paulino Calderon (@calderpwn) is a published author and international speaker with
over 12 years of experience in network and application security. When he isn’t traveling
to security conferences or consulting for Fortune 500 companies with Websec, a
company he co-founded in 2011, he spends peaceful days enjoying the beach in
Cozumel, Mexico. He loves open source software and has contributed to many projects,
including Nmap, Metasploit, OWASP Mobile Security Testing Guide (MSTG), OWASP
Juice Shop, and OWASP IoT Goat.

Evangelos Deirmentzoglou (@edeirme) is an information security professional
interested in solving security problems at scale. He led and structured the cybersecurity
capability of the financial tech startup Revolut. A member of the open source
community since 2015, he has made multiple contributions to Nmap and Ncrack. He is
currently researching a cybersecurity PhD focusing on source code analysis, which he
has previously applied for many major US technology vendors, Fortune 500 companies,
and financial and medical institutions.

Beau Woods (@beauwoods) is a cyber safety innovation fellow with the Atlantic
Council and a leader with the I Am The Cavalry grassroots initiative. He is also the
founder and CEO of Stratigos Security and sits on the board of several nonprofits. In his
work, which bridges the gap between the security research and public policy
communities, he ensures that any connected technology able to impact human safety is
worthy of our trust. He formerly served as an entrepreneur in residence with the US
FDA and a managing principal consultant at Dell SecureWorks. He has spent the past
several years consulting with the energy, healthcare, automotive, aviation, rail, and IoT
industries, as well as with cybersecurity researchers, US and international policymakers,
and the White House. Beau is a published author and frequent public speaker.


http://www.twitter.com/@calderpwn
http://www.twitter.com/@edeirme
http://www.twitter.com/@beauwoods

ABOUT THE TECHNICAL REVIEWER

Aaron Guzman is co-author of the IoT Penetration Testing Cookbook and a technical
leader for Cisco Meraki’s security team. As part of OWASP’s IoT and Embedded
Application Security projects, he leads open source initiatives that raise awareness of
IoT security defensive strategies and lower the barrier for entry into IoT hacking. Aaron
is co-chair of Cloud Security Alliance’s IoT Working Group and a technical reviewer for
several 10T security books. He has extensive public speaking experience, delivering
conference presentations, trainings, and workshops globally. Follow Aaron’s research on

Twitter at @scriptingxss.


http://www.twitter.com/@scriptingxss

FOREWORD

Today’s security programs are designed to
handle traditional threats in the enterprise. But
technology moves at such a rapid rate that
keeping up with an organization’s footprint
gets harder and harder.

The birth of the Internet of Things (IoT) turned traditional manufacturing companies
to software development companies overnight. These companies began combining
integrated hardware and software to improve their products’ efficiency, updates, ease of
use, and maintainability. Normally found in critical infrastructures, such as our homes
or on our enterprise networks, these devices now seemingly provided a new wave of
features and adaptations to make our lives easier.

These black boxes have also created a new dilemma for our security foundations.
Designed from a manufacturing mind-set, they have little security integration. They’ve
exposed our lives to new threats and provided entry points into infrastructure that never
existed before. In addition, these devices still have little to no monitoring and contain a
number of security exposures, and we are largely blind to intrusions into them. When
we identify threats to our organization, these devices don’t bubble up. Often, they don’t
even rise to security review status within the enterprise.

Practical IoT Hacking isn’t just another security book: it’s a philosophy on security
testing and how we need to change our views on connected devices within our homes
and enterprise to build a better model for protecting ourselves. Many of the
manufacturing companies don’t have security practices built into the development life
cycle, and as a result, these systems are highly susceptible to attack. These devices are
found in nearly every element of our lives. IoT impacts every industry vertical and
company, posing a risk that most organizations aren’t equipped to handle.

Most people don’t truly understand the risks associated with IoT devices. The general
thought is that the devices don’t contain sensitive information or aren’t critical to the
company. In reality, attackers use these devices as covert channels into the network that
go undetected for long periods of time, leading directly to the rest of the organization’s
data. As an example, I recently contributed to an incident response case for a large
manufacturing firm. We discovered the attackers had broken into the organization
through a programmable logic controller (PLC). One of the manufacturing plants had
utilized a third-party contractor to manage the devices, and the attackers had access to
the contractor’s systems. This provided the attackers with access to all of the customer
information and to the company data for more than two years without the company’s



knowledge.

The PLC was a pivot point to the rest of the network and ultimately had direct access
to all of the company’s research and development systems, which contained the majority
of the organization’s intellectual and unique property. The only reason this attack was
detected was that one of the attackers got sloppy while dumping the domain controller’s
usernames and passwords, accidently crashing the system and resulting in an
investigation.

The authors of Practical IoT Hacking have put together a book that focuses first on
understanding what the risks and exposures are through threat modeling and how to
build a successful testing methodology around IoT devices. It expands into hardware
hacking, network hacking, radio hacking, and targeting the whole IoT ecosystem,
building upon technical assessments against devices to understand the exposures
identified. When establishing testing methodologies for IoT devices, this book covers
exactly what you’ll need to set up not only a testing program for IoT within an
organization, but also how to conduct the testing. This book aims to change how we do
security testing in most organizations and to help build a better understanding of our
risks, including IoT testing as part of that process.

I recommend this book to anyone technical who manufactures IoT devices or anyone
with IoT devices in their homes or enterprise. At a time when securing our systems and
protecting our information has never been more important, this book hits the mark. I'm
truly excited for this book, seeing the work that was put into it, and I know it will help us
design a more secure IoT infrastructure in the future.

Dave Kennedy Founder of TrustedSec, Binary Defense



ACKNOWLEDGMENTS

We want to thank Frances Saux and the rest of
the No Starch Press team who contributed to
this book. We also thank Aaron Guzman for his
in-depth technical review of the book. We
acknowledge Salvador Mendoza’s contribution
to the beginning of the RFID chapter. We are also thankful for
George Chatzisofroniou’s insight into some concepts
referenced in the Wi-Fi chapter.

In addition, we want to thank the EFF for providing us with valuable consultation
regarding the legal landscape while writing this book. Finally, we want to thank Harley
Geiger, David Rogers, Marie Moe, and Jay Radcliffe for their perspectives in Chapter 1,
and Dave Kennedy for writing the foreword.



INTRODUCTION

Our dependence on connected technology is
growing faster than our ability to secure it. The
same technologies we know to be vulnerable,
exposed to accidents and adversaries in our
computer systems and enterprises, are now
driving us to work, delivering patient care, and monitoring our
homes. How can we reconcile our trust in these devices with
their inherent lack of trustworthiness?

Cybersecurity analyst Keren Elazari has said that hackers are “the immune system of
the digital era.” We need technically minded individuals to identify, report, and protect
society from the harms that the internet-connected world causes. This work has never
been more important, yet too few people have the necessary mind-set, skills, and tools.

This book intends to strengthen society’s immune system to better protect us all.

This Book’s Approach

The IoT hacking field has a large breadth, and this book takes a practical approach to the
topic. We focus on concepts and techniques that will get you started quickly with testing
actual IoT systems, protocols, and devices. We specifically chose to demonstrate tools
and susceptible devices that are affordable and easy to obtain so you can practice on
your own.

We also created custom code examples and proof-of-concept exploits that you can
download from the book’s website at https://nostarch.com/practical-iot-hackin
Some exercises are accompanied by virtual machines to make setting up the targets
straightforward. In some chapters, we reference popular open source examples that you
can readily find online.

Practical IoT Hacking isn’t a guide to IoT hacking tools, nor does it cover every aspect
of IoT security, because these topics would take an even bigger book to cover, one much
too cumbersome to read. Instead, we explore the most basic hardware hacking
techniques, including interfacing with UART, I2C, SPI, JTAG, and SWD. We analyze a
variety of IoT network protocols, focusing on those that aren’t only important, but also
haven’t been extensively covered in other publications. These include UPnP, WS-
Discovery, mDNS, DNS-SD, RTSP/RTCP/RTP, LoRa/LoRaWAN, Wi-Fi and Wi-Fi


https://nostarch.com/practical-iot-hacking/

Direct, RFID and NFC, BLE, MQTT, CDP, and DICOM. We also discuss real-world
examples that we’ve encountered in past professional testing engagements.

Who This Book Is For

No two people share identical backgrounds and experience. Yet analyzing IoT devices
requires skills spanning nearly every domain of expertise, because these devices
combine computing power and connectivity into every facet of our world. We can’t
predict which parts of this book each person will find the most compelling. But we
believe that making this knowledge available to a broad population gives them power to
have greater control over their increasingly digitizing world.

We wrote the book for hackers (sometimes called security researchers), although we
expect that it will be useful to others as well, such as the following individuals:

e A security researcher might use this book as a reference for experimenting with an
IoT ecosystem’s unfamiliar protocols, data structures, components, and concepts.

¢ An enterprise sysadmin or network engineer might learn how to better protect
their environment and their organization’s assets.

e A product manager for an IoT device might discover new requirements their
customers will assume are already present and build them in, reducing cost and the
time it takes the product to reach the market.

* A security assessor might discover a new set of skills to better serve their clients.

¢ A curious student might find knowledge that will catapult them into a rewarding
career of protecting people.

This book was written assuming the reader already has some familiarity with Linux
command line basics, TCP/IP networking concepts, and coding. Although not required
to follow along in this book, you can also refer to supplementary hardware hacking
material, such as the The Hardware Hacking Handbook by Colin O’Flynn and Jasper
van Woudenberg (No Starch Press, forthcoming). We recommend additional books in
certain chapters.

Kali Linux

Most of the exercises in this book use Kali Linux, the most popular Linux distribution
for penetration testing. Kali comes with a variety of command line tools, all of which
we'll explain in detail as we use them in the book. That said, if you don’t know your way
around the operating system, we recommend reading Linux Basics for Hackers by
OccupyTheWeb (No Starch Press, 2019) and exploring the material at https://kali.org/,

including its free course at https://kali.training/.
To install Kali, follow the instructions at https://www.kali.org/docs/installation/.

The version you use shouldn’t matter as long as it’s up to date, however, please keep in
mind that we tested most of the exercises for rolling Kali versions between 2019 and


https://kali.org/
https://kali.training/
https://www.kali.org/docs/installation/

2020. You can try out older images of Kali at htip://old.kali.org/kali-images/ if you
have trouble installing any particular tool. Newer versions of Kali will by default not

have all the tools installed, but you can add them through the ka1i-1inux-1arge
metapackage. Enter the following command in a terminal to install the metapackage:

$ sudo apt install kali-linux-large

We also recommend using Kali inside a virtual machine. Detailed instructions are on
the Kali website, and various online resources describe how to do that using VMware,
VirtualBox, or other virtualization technologies.

How This Book Is Organized

The book has 15 chapters loosely split between five parts. For the most part, the chapters
are independent from each other, but you might encounter references to tools or
concepts in later chapters that we introduced in earlier ones. For that reason, although
we wrote the book trying to keep most chapters self-contained, we recommend reading
it in sequential order.

Part I: The IoT Threat Landscape

Chapter 1: The IoT Security World paves the way for the rest of the book by
describing why IoT security is important and what makes IoT hacking special.

Chapter 2: Threat Modeling discusses how to apply threat modeling in IoT
systems, as well as what common IoT threats you’ll find, by walking through an
example threat model of a drug infusion pump and its components.

Chapter 3: A Security Testing Methodology lays out a robust framework for
conducting holistic manual security assessments on all layers of IoT systems.

Part II: Network Hacking

Chapter 4: Network Assessments discusses how to perform VLAN hopping in
IoT networks, identify IoT devices on the network, and attack MQTT authentication
by creating a Ncrack module.

Chapter 5: Analyzing Network Protocols provides a methodology for working
with unfamiliar network protocols and walks through the development process of a
Wireshark dissector and Nmap Scripting Engine module for the DICOM protocol.

Chapter 6: Exploiting Zero-Configuration Networking explores network
protocols used for automating the deployment and configuration of IoT systems,
showcasing attacks against UPnP, mDNS, DNS-SD, and WS-Discovery.

Part III: Hardware Hacking
Chapter 7: UART, JTAG, and SWD Exploitation deals with the inner


http://old.kali.org/kali-images/

workings of UART and JTAG/SWD by explaining how to enumerate UART and
JTAG pins and hacking an STM32F103 microcontroller using UART and SWD.

Chapter 8: SPI and I*C explores how to leverage the two bus protocols with
various tools to attack embedded IoT devices.

Chapter 9: Firmware Hacking shows how to obtain, extract, and analyze
backdoor firmware, and examine common vulnerabilities in the firmware update
process.

Part IV: Radio Hacking

Chapter 10: Short Range Radio: Abusing RFID demonstrates a variety of
attacks against RFID systems, such as how to read and clone access cards.

Chapter 11: Bluetooth Low Energy shows how to attack the Bluetooth Low
Energy protocol by walking through simple exercises.

Chapter 12: Medium Range Radio: Hacking Wi-Fi discusses Wi-Fi
association attacks against wireless clients, ways of abusing Wi-Fi Direct, and
common Wi-Fi attacks against access points.

Chapter 13: Long Range Radio: LPWAN provides a basic introduction to the
LoRa and LoRaWAN protocols by showing how to capture and decode these kinds
of packets and discussing common attacks against them.

Part V: Targeting the IoT Ecosystem

Chapter 14: Attacking Mobile Applications reviews common threats, security
issues, and techniques for testing mobile apps on Android and iOS platforms.

Chapter 15: Hacking the Smart Home animates many of the ideas covered
throughout the book by describing techniques for circumventing smart door locks,
jamming wireless alarm systems, and playing back IP camera feeds. The chapter
culminates by walking through a real-world example of taking control of a smart
treadmill.

Tools for IoT Hacking lists popular tools for practical IoT hacking, including
those we discuss and others that, although not covered in the book, are still useful.

Contact

We’re always interested in receiving feedback, and we’re willing to answer any questions
you might have. You can use errata@nostarch.com to notify us about errors when you
find them and ithilgore@sock-raw.org for general feedback.



http://mailto:errata@nostarch.com
http://mailto:ithilgore@sock-raw.org

PART |
THE IOT THREAT LANDSCAPE



1
THE IOT SECURITY WORLD

From the roof of your apartment building,
you’re probably surrounded by the Internet of
Things (IoT). On the street below, hundreds of
“computers on wheels” drive by every hour,
each of them made up of sensors, processors,
and networking equipment. On the skyline, apartment
buildings prickle with an array of antennae and dishes
connecting the many personal assistants, smart microwaves,
and learning thermostats to the internet. Above, mobile data
centers streak through the sky at hundreds of miles per hour,
leaving a data trail thicker than their contrails. Walk into a
manufacturing plant, a hospital, or an electronics store and
you’ll be similarly overwhelmed by the ubiquity of connected
devices.

Although definitions differ widely, even among experts, for purposes of this book, the
term IoT refers to physical devices that have computing power and can transfer data
over networks, yet don’t typically require human-to-computer interaction. Some people
describe 10T devices by what they almost are: “like computers, but not quite.” We often
label specific IoT devices as “smart”—for instance, a smart microwave—although many
people have begun questioning the wisdom of doing so. (See Lauren Goode’s 2018
article in The Verge, “Everything is connected, and there’s no going back.”) It’s doubtful
that a more authoritative definition of IoT will arrive anytime soon.

For hackers, the 10T ecosystem is a world of opportunities: billions of interconnected
devices transferring and sharing data, creating a massive playground for tinkering,
crafting, exploiting, and taking these systems to their limits. Before we dive into the
technical details of hacking and securing IoT devices, this chapter introduces you to the
world of 10T security. We’ll conclude with three case studies about the legal, practical,
and personal aspects of securing IoT devices.



Why Is IoT Security Important?

You've probably heard the statistics: tens of billions of new IoT devices will exist by
2025, increasing global GDP by tens of trillions of dollars. But that’s only if we get things
right and the new devices fly off the shelves. Instead, we’'ve seen safety, security, privacy,
and reliability concerns stifling adoption. Security concerns can be as much of a
deterrent as the price of a device.

Slow growth in the IoT industry isn’t just an economic issue. IoT devices in many
areas have the potential to improve lives. In 2016, 37,416 people died on American
highways. According to the National Highway Traffic Safety Administration, 94 percent
of those deaths were caused by human error. Autonomous vehicles can drastically
reduce those numbers and make our roads safer, but only if they’re trustworthy.

In other parts of our lives, we also stand to reap benefits from adding greater
capabilities to our devices. For instance, in health care, pacemakers that can send data
to the doctor daily will significantly reduce death from heart attacks. Yet in a panel
discussion at the Cardiac Rhythm Society, a doctor from the Veteran’s Affairs system
said that her patients refused to get implanted devices because they were afraid of
hacking. Many people in industry, government, and the security research communities
fear that a crisis of confidence will delay lifesaving technology by years or decades.

Of course, as these same technologies become increasingly intertwined with our lives,
we must know—not just hope—that they’re worthy of the trust we place in them. In a UK
government-funded study of consumer beliefs about IoT devices, 72 percent of
respondents expected that the security was already built in. Yet for much of the IoT
industry, security is an aftermarket afterthought.

In October 2016, the Mirai botnet attacks occurred, and the US federal government,
along with others around the world, collectively took notice. This escalating series of
attacks co-opted hundreds of thousands of low-cost devices for its own purposes,
gaining access through well-known default passwords, such as admin, password, and 1234. It
culminated in a Distributed Denial of Service (DDoS) against Domain Name System
(DNS) provider Dyn, part of the internet infrastructure for many American giants, such
as Amazon, Netflix, Twitter, the Wall Street Journal, Starbucks, and more. Customers,
revenue, and reputations were shaken for more than eight hours.

Many people assumed the attacks had been the work of a foreign national power.
Shortly after Mirai, the WannaCry and NotPetya attacks caused trillions of dollars in
damage globally, partially because they impacted IoT systems used in critical
infrastructure and manufacturing. They also left governments with the distinct
impression that they were behind the curve in their duty to protect their citizens.
WannaCry and NotPetya were essentially ransomware attacks that weaponized the
EternalBlue exploit, which takes advantage of a vulnerability in Microsoft’s
implementation of the Server Message Block (SMB) protocol. By December 2017, when
it was revealed that Mirai had been designed and executed by a few college-aged kids,
governments around the world knew they had to examine the extent of the IoT security
problem.

There are three paths forward for IoT security: the status quo can remain, consumers



can begin to “bolt” security onto devices that are insecure by default, or manufacturers
can build security into the devices at the outset. In the status quo scenario, society would
come to accept regular harms from security issues as a necessary part of using IoT
devices. In the aftermarket security scenario, new companies would fill the void
neglected by device manufacturers, and buyers would end up paying more for security
whose capabilities are less fit for purpose. In the third scenario in which manufacturers
build security capabilities into their devices, buyers and operators become better
equipped to address issues and risk and cost decisions shift toward more efficient points
in the supply chain.

We can draw instruction from the past to see how these three scenarios, especially the
last two, might work out. For instance, the original fire escapes in New York were
frequently bolted to the outside of buildings. As a result, they often increased cost and
harm to the occupants overall, according to an Atlantic article titled “How the Fire
Escape Became an Ornament.” Today, they’re built into buildings, often the first thing
constructed, and residents have never been safer from fires. Much the same as fire
escapes in buildings, security built into IoT devices can bring new capabilities not
possible in bolted-on approaches, such as updatability, hardening, threat modeling, and
component isolation—all of which you’ll read about in this book.

Note that the aforementioned three paths forward aren’t mutually exclusive; the IoT
market can support all three scenarios.

How Is loT Security Different than Traditional IT Security?

IoT technology differs from more familiar information technology (IT) in key ways. I Am
The Cavalry, a global grassroots initiative in the security research community, has an
instructional framework for comparing the two and is outlined here.

Consequences of 10T security failures might cause a direct loss of life. They could also
shatter confidence in the firm or the broader industry as well as trust in a government’s
ability to safeguard citizens through oversight and regulation. For instance, when
WannaCry hit, patients with time-sensitive conditions, such as strokes or heart attacks,
undoubtedly went untreated because the attack delayed care delivery for days.

The adversaries who attack these kinds of systems have different goals, motivations,
methods, and capabilities. Some adversaries might try to avoid causing harm, whereas
others might seek out IoT systems specifically to cause harm. For instance, hospitals are
frequently targeted for ransom because the potential harm to patients increases the
likelihood and speed of the victims paying.

The composition of 10T devices, including safety systems, creates constraints that
aren’t found in typical IT environments. For instance, size and power constraints in a
pacemaker create challenges for applying conventional IT security approaches that
require high amounts of storage or computing power.

IoT devices often operate in specific contexts and environments, such as homes,
where they’re controlled by individuals without the knowledge or resources needed for
secure deployment, operation, and maintenance. For instance, we shouldn’t expect the



driver of a connected car to install aftermarket security products, such as antivirus
protection. Nor should we expect them to have the expertise or capability to respond
quickly enough during a security incident. But we would expect this of an enterprise.

The economics of IoT manufacturing drive device costs (and therefore component
costs) to a minimum, often making security an expensive afterthought. Also, many of
these devices are targeted at price-sensitive customers who lack experience selecting and
deploying infrastructure securely. Additionally, the costs of the devices’ insecurity
frequently accrue to individuals who aren’t the primary owner or operator of a device.
For instance, the Mirai botnet took advantage of hardcoded passwords, embedded in
chipset firmware, to spread. Most owners didn’t know that they should change their
passwords or didn’t know how to do so. Mirai cost the US economy billions of dollars by
targeting a third-party DNS supplier that didn’t own any impacted devices.

Timescales for design, development, implementation, operation, and retirement are
often measured in decades. Response time might also be extended because of
composition, context, and environment. For instance, connected equipment at a power
plant is often expected to live for more than 20 years without replacement. But attacks
against a Ukrainian energy supplier caused outages mere seconds after the adversaries
took action within the industrial control’s infrastructure.

What’s Special About IoT Hacking?

Because IoT security differs from traditional IT security in significant ways, hacking IoT
systems requires different techniques as well. An IoT ecosystem is typically composed of
embedded devices and sensors, mobile applications, cloud infrastructure, and network
communication protocols. These protocols include those on the TCP/IP network stack
(for example, mDNS, DNS-SD, UPnP, WS-Discovery, and DICOM), as well as protocols
used in short-range radio (like NFC, RFID, Bluetooth, and BLE), medium-range radio
(like Wi-Fi, Wi-Fi Direct, and Zigbee), and long-range radio (like LoRa, LoRaWAN, and
Sigfox).

Unlike traditional security tests, IoT security tests require you to inspect and often
disassemble the device hardware, work with network protocols that you won’t normally
encounter in other environments, analyze device-controlling mobile apps, and examine
how devices communicate to web services hosted on the cloud through application
programming interfaces (APIs). We explain all of these tasks in detail throughout the
following chapters.

Let’s look at an example of a smart door lock. Figure 1-1 shows a common architecture
for smart lock systems. The smart lock communicates with the user’s smartphone app
using Bluetooth Low Energy (BLE), and the app communicates with the smart lock
servers on the cloud (or as some would still say, someone else’s computer) using an API
over HTTPS. In this network design, the smart lock relies on the user’s mobile device for
connectivity to the internet, which it needs to receive any messages from the server on
the cloud.



il O

i O

Cloud server

pEY Internet

BLE *}))

Mobile app Smart lock

Figure 1-1: Network diagram of a smart lock system

All three components (the smart lock device, smartphone app, and cloud service)
interact and trust each other, making for an IoT system that exposes a large attack
surface. Consider what happens when you revoke the digital key to your Airbnb guest
using this smart lock system. As the owner of the apartment and the smart lock device,
your mobile app is authorized to send a message to the cloud service that cancels the
guest user’s key. Of course, you might not be anywhere near the apartment and the lock
when you do that. After the server receives your revocation update, it sends a special
message to the smart lock to update its access control list (ACL). If a malicious guest
simply puts their phone on airplane mode, the smart lock won’t be able to use it as a
relay to receive this state update from the server, and they’ll still be able to access your
apartment.

A simple revocation evasion attack like the one we just described is indicative of the
types of vulnerabilities you'll come across when you hack IoT systems. In addition, the
constraints imposed by using small, low-power, low-cost embedded devices only
increase the insecurity of these systems. For example, instead of using public key
cryptography, which is resource intensive, IoT devices usually rely only on symmetric
keys to encrypt their communication channels. These cryptographic keys are very often
non-unique and hardcoded in the firmware or hardware, which means that attackers
can extract them and then reuse them in other devices.

Frameworks, Standards, and Guides

The standard approach to dealing with these security issues is to implement, well,
standards. In the past few years, many frameworks, guidelines, and other documents
have tried to solve different aspects of the security and trust problem in IoT systems.
Although standards are meant to consolidate industries around generally accepted best
practices, the existence of too many standards creates a fractured landscape, indicating
a broad disagreement about how to do something. But we can draw a lot of value from
looking at the various standards and frameworks, even as we recognize that there’s no



consensus about the best way to secure IoT devices.

First, we can separate those documents that inform design from those that govern
operation. The two are interrelated because a device’s designed capabilities are available
to operators to secure their environments. The converse is also true: many capabilities
absent in the device’s design are impossible to implement in operations, such as secure
software updates, forensically sound evidence capture, in-device isolation and
segmentation, and secure failure states, among others. Procurement guidance
documents, often issued by companies, industry associations, or governments, can help
bridge the two documents.

Second, we can distinguish frameworks from standards. The first defines categories
of achievable goals, and the second defines processes and specifications for achieving
those goals. Both are valuable, yet frameworks are more evergreen and broadly
applicable because security standards frequently age quickly and work best when they're
use-case specific. On the other hand, some standards are extremely useful and form core
components of IoT technology, such as those for interoperability, like IPv4 and Wi-Fi.
As aresult, a combination of frameworks and standards can lead to effective governance
of a technical landscape.

In this book, we reference frameworks and standards, where appropriate, to give
designers and operators guidance on how to fix issues that security researchers identify
when they use the tools, techniques, and processes we outline. Here are examples of
standards, guidance documents, and frameworks:

Standards The European Telecommunications Standards Institute (ETSI),
founded in 1988, creates more than 2,000 standards every year. Its Technical
Specification for Cyber Security for Consumer Internet of Things outlines detailed
provisions for building IoT devices securely. The US National Institute of Standards
and Technology (NIST) and the International Organization for Standardization
(ISO) publish several standards that support secure IoT devices.

Frameworks I Am The Cavalry, founded in 2013, is a global grassroots initiative
composed of members of the security research community. Its Hippocratic Oath for
Connected Medical Devices (Figure 1-2) describes objectives and capabilities for
designing and developing medical devices. Many of these have been adopted into
the FDA’s regulatory criteria for approving medical devices. Other frameworks
include the NIST Cybersecurity Framework (which applies to owning and operating
IoT devices), Cisco’s IoT security framework, and the Cloud Security Alliance IoT
Security Controls Framework, among others.

Guidance documents The Open Web Application Security Project (OWASP),
started in 2001, has branched out well beyond the scope of its namesake. Its Top 10
lists have become powerful tools for software developers and IT procurement and
are used to increase the level of security across various projects. In 2014, its IoT
Project (Figure 1-3) published its first Top 10 list. The latest version (as of this
writing) is from 2018. Other guidance documents include the NIST IoT Core
Baseline, the NTIA IoT Security Upgradability and Patching resources, ENISA’s
Baseline Security Recommendations for IoT, the GSMA IoT Security Guidelines and
Assessment, and the IoT Security Foundation Best Practice Guidelines.



Hippocratic Oath

For Connected Medical Devices

All systems fail. What is your ready posture toward failure?

Cyber Safety by Design — Anticipate and avoid failure
Third-Party Collaboration — Engage willing allies to avoid failure
Evidence Capture — Observe and learn from failure

Resilience and Containment — Prevent cascading failure

Cyber Safety Updates — Correct failure conditions once known

il aple nh Al Al

Connections and Ongoing Collaborations

diw (2 0 el O o el

Security
Researchers Patients

Device Policy Insurers Physicians &  Standards SEsh e Government

Makers Makers & Payers Care Givers Organizations Providers Agencies

https:/ flamthecavalry.org/oath

Figure 1-2: The Hippocratic Oath for Connected Medical Devices, an IoT framework



-
-

@ OWASProre

= INTERNETOFTHINGS 2

Use of Insecure or Outdated Components

Use of deprecated or insecure software components/libraries that could a
compromised. This includes insecure customization of cperating sy:

the use of third-party software or hardware compone

Insufficient Privacy Protection
r's persanal information st

Insecure Data Transfer and Storage
Lack of encryption or access control of sensitive data anywhere within the ecosystem,
including at rest, in transit, or during processing.

Lack of Device Management b
Lack of security support on devices deployed in production, including asset managemant.
update management, secure decommissioning, systems monitoring, and response
capabilities.

Insecure Default Settings
EIE\"I:H or systems shipped with insecure default settings or lack the ability to make the
system maore secure by restricting operators from modifying configurations.

Lack of Physical Hardening
Lack of physical hardening measures, allowing potential attackers to gain sensitive
infarmation that can help in a future remote attack or take local control of the device,




Figure 1-3: The OWASP Top 10 Internet of Things risks, a guidance document

Case Study: Finding, Reporting, and Disclosing an loT
Security Issue

Although the bulk of this book details technical considerations, you should understand
some of the other factors that affect IoT security research. These factors, learned from
lifetimes of working in this field, include the trade-offs you must make when disclosing a
vulnerability and what researchers, manufacturers, and the general public should take
into account when doing so. The following case study outlines an IoT security research
project that ended successfully. We highlight how and why.

In 2016, Jay Radcliffe, a security researcher and type I diabetic, discovered and
reported three security issues in the Animas OneTouch Ping insulin pump to the
manufacturer. His work began in the prior months when he bought devices, built a test
lab, and identified threats to test against. In addition, he sought legal advice to ensure
that his testing followed national and local laws.

Jay’s primary goal was to protect patients, so he reported the vulnerability through
the manufacturer’s coordinated vulnerability disclosure policy. Through email, phone,
and in-person conversations, Jay explained the technical details, the impact of the
issues, and the steps needed to mitigate them. This process took several months, during
which time he demonstrated an exploitation of the vulnerabilities and provided proof-
of-concept code.

Later that year, when Jay learned that the manufacturer had no plans to produce any
technical fix until it released a new version of the hardware, he published a public
disclosure that included the following response: “If any of my children became diabetic
and the medical staff reccommended putting them on a pump, I would not hesitate to put
them on an OneTouch Ping. It is not perfect, but nothing is.” See
https://blog.rapidz.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-

onetouch-ping-insulin-pump/ for the full disclosure.

Jay had been working for nearly a year to find the vulnerability and get it fixed. He
was scheduled to present his work at a major conference after the manufacturer had
notified the affected patients. Many patients relied on postal mail for these types of
communications, and unfortunately, the mail wouldn’t arrive until after his talk. Jay
made the difficult decision to cancel his talk at the conference so patients could find out
about the issue from their doctor or the company rather than from a news article.

You can learn several lessons from examples set by mature security researchers like
Jay:

They consider the effect of their discoveries on the people involved. Jay’s
preparation involved not just getting legal perspectives, but also ensuring that his
testing wouldn’t impact anyone outside the lab. In addition, he ensured that
patients learned about the issues from people they trusted, reducing the chance that
they’d panic or stop using the lifesaving technology.


https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/

They inform rather than supplant decision-making. Jay understood that the
manufacturer had dedicated fewer resources to fixing older devices and instead
focused on creating newer products to save and improve even more lives. Instead of
pushing for the device makers to patch the old vulnerable devices, he deferred to
their judgment.

They lead by example. Jay, as well as many other researchers in health care, have
fostered long-term relationships with patients, regulators, doctors, and
manufacturers. In many cases, this has meant foregoing public recognition and paid
projects, as well as exercising extreme patience. But the results speak for
themselves. The leading device makers are producing the most secure medical
devices ever while engaging the security research community at events like the
Biohacking Village at DEF CON.

They know the law. Security researchers have been receiving legal threats for
decades. Some of them frivolous. Others, not so much. Although experts are still
working on standardized language for regulating coordinated disclosure and bug
bounty programs, researchers have rarely, if ever, faced legal consequences for
disclosing within these programs.

Expert Perspectives: Navigating the loT Landscape

We reached out to several recognized experts in law and public policy to help inform
readers about topics not traditionally covered in hacking books. Harley Geiger writes on
two laws relevant to security researchers in the United States, and David Rogers covers
efforts underway in the United Kingdom to improve security of IoT devices.

loT Hacking Laws

Harley Geiger, Director of Public Policy, Rapid7

Arguably, the two most important federal laws affecting IoT research are the Digital
Millennium Copyright Act (DMCA) and the Computer Fraud and Abuse Act (CFAA).
Let’s take a quick look at these gruesome statutes.

A lot of IoT security research involves working around weak protections to software,
but the DMCA normally forbids circumventing technological protection measures
(TPMs), such as encryption, authentication requirements, and region coding, to access
copyrighted works (like software) without the copyright owner’s permission. This would
require researchers to get permission from IoT software manufacturers before
performing IoT security research—even for devices you own! Fortunately, there’s a
specific exemption for security testing in good faith, enabling security researchers to
circumvent TPMs without the copyright owner’s permission. The Librarian of Congress
authorized this exemption at the request of the security research community and its
allies. As of 2019, to obtain legal protection under the DMCA, the research must meet
these basic parameters:

¢ The research must be on a device that is lawfully acquired (for example, authorized by



the computer owner).

e The research must be solely for the purpose of testing or correcting security
vulnerabilities.

o The research must be performed in an environment designed to avoid harm (so, not
in a nuclear plant or a congested highway).

e The information derived from the research must be used primarily to promote the
safety or security of devices, computers, or their users (not primarily for piracy, for
example).

e The research must not violate other laws, such as (but not limited to) the CFAA.

There are two exemptions, but only one provides any real protection. This stronger
exemption must be renewed every three years by the Librarian of Congress, and the
scope of the protection can change when it’s renewed. Some of the most progressive
outcomes for legal protections for security research happen as a result of this process.
The most recent, 2018 version of the DMCA security testing exemption appears at
https: //www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-

23241.pdf#page=17/.

The CFAA comes up a lot, too; as you just saw, it’s referenced in the security testing
protections under the DMCA. The CFAA is the United States’ foremost federal anti-
hacking law, and—unlike the DMCA—the law doesn’t presently include direct
protections for security testing. But the CFAA generally applies to accessing or damaging
other peoples’ computers without the computer owner’s authorization (not, as with the
DMCA, the software copyright’s owner). Well, what if you're authorized to use an IoT
device (say, by an employer or a school) but your IoT research would exceed this
authorization? Ah, the courts are still arguing over that one. Welcome to one of the legal
gray areas of the CFAA, which by the way was enacted more than 30 years ago.
Nonetheless, if you're accessing or damaging an IoT device that you own or are
authorized (by the computer owner) to perform research on, you're more likely in the
clear under the DMCA and CFAA. Congrats.

But wait! Many other laws can implicate IoT security research, particularly state anti-
hacking laws, which can be even broader and vaguer than the CFAA. (Fun fact:
Washington state’s hacking law has a specific legal protection for “white hat hackers.”)
The point is, don’t assume your IoT security research is ultralegal just because you're
not violating DMCA or CFAA—although that’s a very good start!

If you find these legal protections confusing or intimidating, you're not alone. These
laws are complex and literally boggle even the keen minds of lawyers and elected
officials, but there’s a determined and growing effort to clarify and strengthen legal
protections for security research. Your voice and experiences dealing with ambiguous
laws that deter valuable IoT security research can be a helpful contribution to the
ongoing debate over reforming the DMCA, CFAA, and other laws.

The Role of Government in IoT Security


https://www.govinfo.gov/content/pkg/FR-2018-10-26/pdf/2018-23241.pdf#page=17/

David Rogers, CEO of Copper Horse Security, author of UK Code of Practice, and
Member of the Order of the British Empire (MBE) for services to Cyber Security

Governments have the unenviable task of protecting a society while enabling the
economy to flourish. Although states around the world have been hesitant to weigh in on
IoT security for fear of stifling innovation, events like the Mirai botnet, WannaCry, and
NotPetya have caused legislatures and regulators to rethink their hands-off approach.

One such government effort is the UK’s Code of Practice. First published in March
2018, it aims to make the United Kingdom the safest place to live and do business
online. The state recognized that the IoT ecosystem had huge potential, but also huge
risks, because manufacturers were failing to protect consumers and citizens. In 2017, it
put an Expert Advisory Group together, composed of people from across industry,
government, and academia, which started looking at the problem. In addition, the
initiative consulted many members of the security research community, including
organizations such as I Am The Cavalry.

The code settled on 13 guidelines that, as a whole, would raise the bar of
cybersecurity, not just for devices, but also for the surrounding ecosystem. It applies to
mobile application developers, cloud providers, and mobile network operators, as well
as retailers. This approach shifts the burden of security from consumers to organizations
better equipped and incentivized to address security issues earlier in the device life
cycle.

You can read the entire code at https://www.gov.uk/government/publications/code-

of-practice-for-consumer-iot-security/. The most urgent items are the top three:
avoiding default passwords, implementing and acting on a vulnerability disclosure
policy, and ensuring software updates are available for devices. The author described
these guidelines as insecurity canaries; if an IoT product fails to meet these guidelines,
the rest of the product is probably flawed as well.

The code took a truly international approach, recognizing the fact that the IoT world
and its supply chain are global concerns. The code has drawn support from dozens of
companies around the globe, and the ETSI adopted it as ETSI Technical Specification
103 645 in January 2019.

For more information on specific government policies on IoT security, see the I Am
The Cavalry IoT Cyber Safety Policy Database at https://iatc.me/iotcyberpolicydb/.

Patient Perspectives on Medical Device Security

Designing and developing IoT devices can force manufacturers to make some difficult
trade-offs. Security researchers who rely on medical devices for their own care, such as
Marie Moe and Jay Radcliffe, know these trade-offs well.

Marie Moe, @mariegmoe, SINTEF

I am a security researcher and I am a patient. Every beat of my heart is generated by a
medical device, a pacemaker implanted in my body. Eight years ago, I woke up lying on
the floor. I had fallen because my heart had taken a break—long enough to cause
unconsciousness. To keep my pulse up and stop my heart from taking pauses, I needed a


https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security/
https://iatc.me/iotcyberpolicydb/

pacemaker. This little device monitors each heartbeat and sends a small electrical signal
directly to my heart via an electrode to keep it beating. But how can I trust my heart
when it’s running on proprietary code and there’s no transparency?

When I got the pacemaker, it was an emergency procedure. I needed the device to stay
alive, so there was no option to not get the implant. But it was time to ask questions. To
the surprise of my doctors, I began asking about the potential security vulnerabilities in
the software running on the pacemaker and the possibilities of hacking this life-critical
device. The answers were unsatisfying. My health-care providers couldn’t answer my
technical questions about computer security; many of them hadn’t even thought about
the fact that this machine within me was running computer code and that little technical
information was available from the implant’s manufacturer.

So, I started a hacking project; over the last four years I've learned more about the
security of the device keeping me alive. I discovered that many of my fears about the
state of medical device cybersecurity were true. I've learned that proprietary software
built with a “security by obscurity approach” can hide bad security and privacy
implementations. I've learned that legacy technology coupled with added connectivity
equals an increase in attack surface, and therefore increased risk for cybersecurity issues
that might impact patient safety. Security researchers like me aren’t hacking devices
with the intention of creating fear or hurting patients. My motivation is to get the
discovered flaws fixed. To do this, collaboration among all stakeholders is critical.

My wish is that other researchers and I are taken seriously by the medical device
manufacturers when we approach them to report cybersecurity issues, acting in the best
interest of patient safety.

First, we need to acknowledge that cybersecurity problems can cause patient safety
issues. Keeping quiet about known vulnerabilities or denying their existence won’t make
patients safer. Transparency efforts, such as creating open standards for secure wireless
communication protocols, publishing a coordinated vulnerability disclosure policy
inviting researchers to report issues in good faith, and releasing cybersecurity advisories
to patients and doctors gives me confidence the manufacturer is taking these issues
seriously and working to mitigate them. This equips my doctor and me with the
confidence needed to balance the medical risks and cybersecurity side effects against my
personal threat model.

The solution going forward is transparency and better collaboration with
understanding and empathy.

Jay Radcliffe, @jradcliffe02, Thermo Fisher Scientific

I vividly remember the day I was diagnosed with diabetes. It was my 22nd birthday. I
had been exhibiting typical symptoms for a type I diabetic: extreme thirst and weight
loss. That day changed my life. I'm one of the rare people who can say I'm fortunate for
my diabetes diagnosis. Diabetes opened up the world of connected medical devices to
me. I already loved to take things apart and rebuild them. This was just a new way to
exercise those instincts and skills. Having a device connected to your physical body that
controls major life functions is indescribable. Knowing that it has wireless connectivity
and vulnerabilities is a different indescribable feeling. I'm thankful for every



opportunity to help make medical devices more resilient to a hostile
electronic/connected world. These devices are critical to keeping people healthy and
alive. Insulin pumps, pacemakers, cardio devices, spinal stimulators, neural stimulators,
and countless other devices are changing people’s lives for the better.

These devices often connect to cell phones and then to the internet, where they can
keep doctors and caretakers informed about a patient’s health. But connectivity comes
with risk. It’s our job as security professionals to help those patients and doctors
understand those risks and help manufacturers identify and control those risks.
Although the nature of computers, connectivity, and security have changed greatly over
the last few decades, the statutory language in the United States hasn’t significantly
changed with respect to good-faith security research. (Check your local laws; they might
be different.) Fortunately, regulatory language, exemptions, and implementations have
changed—for the better—thanks to the work of hackers, academics, companies, and
clueful government personnel. A full treatment of legal issues in security research might
take up several volumes of dry content written by highly experienced lawyers, so this
isn’t the place for that discussion. But in general, if you own a device in the United
States, it’s legal to perform security research on it, up to the boundaries of your own
network.

Conclusion

The IoT landscape is exploding. The number, type, and uses of these “things” changes
faster than any publication deadlines. By the time you read these words, there will be
some new “thing” that we failed to account for in these pages. Even so, we’re confident
this book provides valuable resources and references that allow you to build capabilities
regardless of what you find on your test bench in a year or a decade.



2
THREAT MODELING

The threat modeling process systematically
identifies possible attacks against a device and
then prioritizes certain issues based on their
severity. Because threat modeling can be
tedious, it’s sometimes overlooked.
Nonetheless, it’s vital to understanding threats, their impact,
and the appropriate mitigations you’ll have to take to eliminate
them.

In this chapter, we walk you through a simple framework for threat modeling and
discuss a few alternative frameworks. Then we briefly describe some of the most
important threats that an IoT infrastructure usually encounters so you can successfully
employ threat modeling techniques in your next IoT assessment.

Threat Modeling for loT

When you create threat models for IoT devices specifically, you'll likely run into a few
recurring issues. The reason is that the IoT world is mostly made up of systems with low
computing power, power consumption, memory, and disk space that are deployed in
insecure networking environments. Many hardware manufacturers have realized they
can easily convert any inexpensive platform, such as an Android phone or tablet, a
Raspberry Pi, or an Arduino board, into a sophisticated IoT device.

Consequently, at their core, many IoT devices are running Android or common Linux
distributions, the same operating systems on more than a billion phones, tablets,
watches, and televisions. These operating systems are well known, and they often
provide more functionality than a device needs, increasing the ways an attacker can
exploit it. Worse, IoT developers supplement the operating systems by introducing
custom apps, which lack proper security controls. Then, to make sure their products can
carry out their primary functions, developers often have to bypass the operating
system’s original protections. Still other IoT devices, based on real-time operating
systems (RTOS), minimize processing time without implementing the security
standards of more advanced platforms.



In addition, these IoT devices usually don’t have the capacity to run antivirus or anti-
malware protections. Their minimalistic designs, developed for ease of use, don’t
support common security controls, such as software whitelisting, in which devices allow
only specific software to be installed, or network access control (NAC) solutions, which
enforce network policies that control user and device access. Many vendors stop offering
security updates shortly after the product’s initial release. Also, the white-label firms
that often develop these products distribute them widely through many suppliers under
different brand names and logos, making security and software updates difficult to apply
to all products.

These limitations force many internet-enabled devices to use proprietary or lesser-
known protocols that don’t meet the industry security standards. Often, they can’t
support sophisticated hardening approaches, such as the software integrity control,
which verifies that third parties haven’t tampered with executables, or device
attestation, which uses specialized hardware to ensure that a target device is legitimate.

Following a Framework for Threat Modeling

The easiest way to use threat modeling in your security assessments is to follow a
framework like the STRIDE threat classification model, which focuses on identifying
weaknesses in the technology rather than vulnerable assets or possible attackers.
Developed by Praerit Garg and Loren Kohnfelder at Microsoft, STRIDE is one of the
most popular threat classification schemes. The acronym represents the following
threats:

Spoofing When an actor pretends to play the role of a system component
Tampering When an actor violates the integrity of data or a system
Repudiation When users can deny they took certain actions on the system

Information Disclosure When an actor violates the confidentiality of the
system’s data

Denial of Service When an actor disrupts the availability of a system’s component
or the system as a whole

Elevation of Privilege When users or system components can elevate themselves
to a privilege level they shouldn’t have access to

STRIDE has three steps: identify the architecture, break it into components, and
identify threats to each component. To see this framework in action, let’s imagine we’re
performing threat modeling for a drug infusion pump. We’ll assume that the pump
connects via Wi-Fi to a control server located in the hospital. The network is insecure
and lacks segmentation, meaning a visitor to the hospital could connect to the Wi-Fi and
passively monitor the pump’s traffic. We’ll use this scenario to walk through each step of
the framework.

Identifying the Architecture

We start our threat modeling by examining the device’s architecture. The system



consists of the drug infusion pump and a control server that can send commands to a
few dozen pumps (Figure 2-1). Nurses operate the server, although in some cases,
authorized IT admins might access it, too.

Drug infusion pump | = Control server

Figure 2-1: A simple architecture diagram of an infusion pump

The control server sometimes needs software updates, including updates to its drug
library and patient records. That means it’s sometimes connected to the electronic
health record (EHR) and the update server. The EHR database contains patient health
records. Even though these two components might be beyond the scope of a security
assessment, we're including them in our threat model (Figure 2-2).

EHR

Drug infusion pump | <——— Control server

Update server

Figure 2-2: An expanded architecture diagram of an infusion pump and its control server, which is also connected to
the EHR and an update server

Breaking the Architecture into Components

Now let’s look at the architecture more closely. The infusion pump and the control
server consist of several components, so we need to break down our model to identify
threats more reliably. Figure 2-3 shows the architecture’s components in more detail.



Drug infusion pump Control server

Restrictive user
interface

:

Control server
service

¢ :

Drug library

/\
Y

Pump service  |-—1 EHR

Operating system Operating system A Update server
Firmware of the Firmware of the
device device
components components
Physical system Physical system

Figure 2-3: Breaking down our threat model further

The pump system consists of the hardware (the actual pump), an operating system,
and the software and microcontroller operating inside the pump. We've also taken into
account the control server’s operating system, the control server service (the program
operating the control server), and the restrictive user interface, which limits the user’s
interaction with the service.

Now that we have a better idea of the system, let’s establish the direction in which
information flows between these components. By doing so, we’ll locate sensitive data
and figure out which components an attacker might target. We might also reveal hidden
data-flow paths we didn’t know about. Let’s assume that, after examining the ecosystem
further, we conclude that data flows both ways between all components. We’ve noted
this using bidirectional arrows in Figure 2-3. Keep that detail in mind.

Let’s move on by adding trust boundaries to our diagram (Figure 2-4). Trust
boundaries surround groups with the same security attributes, which can help us expose
data-flow entry points that might be susceptible to threats.



-1

¥

Patient

Onsite components

Drug infusion pump

Pump service

;

Operating system

;

Firmware of the
device
components

;

Physical system

Control server

Resfrictive user
interface

Drug library

;

Control server
service

| | Offsite components

;

Ope rﬂting system

;

Firmware of the
device
compo nents

;

Physical system

Figure 2-4: Diagram with trust boundaries included

L

EHR

Update server

III
I
|||
I
1
|||
[
L
1
all

We create separate trust boundaries around the pump, the control server, the onsite
components, and the offsite components. For practical reasons, we also add two external
users: the patient who will use the pump and the nurse who will operate the control

Server.

Notice that sensitive information, such as patient data from the pump, can reach the

third-party vendor’s update server through the control server. Our method works: we’ve

already spotted our first threat, an insecure update mechanism, which could expose
patient data to unauthorized systems.

Identifying Threats

Now we’ll apply the STRIDE framework to the diagram’s components, giving us a more
comprehensive list of threats. Although we’ll discuss only some of those components in

this exercise for brevity, you should address all of them as part of your threat modeling

process.



First, we'll examine the product’s general security requirements. Often, the vendor
establishes these requirements during development. If we don’t have the vendor’s
specific list of requirements, we can review the device documentation to determine them
on our own. For example, as a medical device, the drug infusion pump must ensure
patient safety and privacy. In addition, all medical equipment should be accredited with
certifications specific to the market in which it’s launched. For instance, devices traded
on the extended Single Market in the European Economic Area (EEA) should have the
Conformité Européenne (CE) certification mark. We’'ll keep these requirements in mind
as we analyze each component.

The Restrictive User Interface

The restrictive user interface (RUI) is the kiosk app that interacts with the control
server service. This app severely limits the actions a user can execute. It’s like an ATM
app; you can interact with the software but only in a handful of ways. In addition to the
general security requirements, the RUI has its own specific constraints. First, the user
shouldn’t be able to escape the app. Second, the user must authenticate with valid
credentials to access it. Now let’s go through each part of the STRIDE model to identify
threats.

When it comes to spoofing, the RUI authenticates users with weak, four-digit PINs
that adversaries can easily predict. If attackers predict the PIN correctly, they can access
authorized accounts and send commands to the infusion pump on behalf of the
accounts’ owners.

In terms of tampering, the RUI can receive input other than the limited set of allowed
input. For example, it could receive input through an external keyboard. Even if most of
the keyboard keys have been disabled, the system might still allow key combinations,
such as shortcuts, hotkeys, or even accessibility features configured by the underlying
operating system (like closing a window by pressing ALT-F4 on Windows). These could
allow users to bypass the RUI and exit the kiosk application. We’ll describe this kind of
attack in Chapter 3.

For repudiation, the RUI supports only a single user account for the medical staff,
making all the log files, if any exist, useless because you can’t identify who actually used
the device. Because the RUI can’t operate in multiuser mode, any member of the
medical team can access the control server and operate the infusion pump without the
system being able to distinguish between them.

When it comes to information disclosure, it’s possible that certain debugging
messages or errors, when presented to the user, might reveal important information
about the patients or system internals. Adversaries might be able to decode these
messages, discover technologies the underlying system uses, and figure out a way to
exploit them.

The RUI might be vulnerable to denial of service attacks because of its brute-force
protection mechanism, which locks a user out of the system after five consecutive
incorrect login attempts. Once the brute-force protection is active, no user can log into
the system for a set period of time. If the medical team accidentally triggers this feature,
they might block access to the system and violate the patient safety security requirement



as a result. Even though security features might protect against some threats, they’ll
often cause other threats. Finding the balance between security, safety, and usability is a
difficult task.

In terms of elevation of privilege, critical medical systems frequently have remote
support solutions that allow the vendor’s technicians to access the software instantly.
The existence of these features automatically increases the component’s threat surface,
because these services are prone to vulnerabilities, and attackers can abuse them to get
remote administrative access within the RUI or the control server service. Even if these
features require authentication, the credentials might be publicly available or be the
same for all products of this line. Or there could be no authentication at all.

The Control Server Service

The control server service is the app that operates the control server. It’s responsible for
communicating with the RUI, the drug library, and the drug infusion pump. It also
communicates with the EHR (to receive information about the patients) using HTTPS
and with the update server (to receive software and drug library updates) using a custom
TCP protocol.

In addition to the general security requirements mentioned earlier, the control server
should be able to identify and verify drug infusion pumps to avoid skimming attacks, in
which an adversary replaces peripheral components with similar, tampered ones. We
should also make sure the data-in-transit is protected. In other words, the
communication protocol between the control server and the pump must be secure and
shouldn’t allow for replay attacks or interception. Replay attacks cause the
retransmission or delay of a critical or state altering request to the server. Additionally,
we must ensure that attackers can’t compromise the hosting platform’s security
controls, which might include application sandboxing, filesystem permissions, and
existing role-based access controls.

Using STRIDE, we can identify the following threats. Spoofing attacks could occur
because the control server doesn’t have a solid method of identifying drug infusion
pumps. If you briefly analyze the communication protocol, you can imitate a pump and
communicate with the control server, which might lead to more threats.

An attacker could tamper with the service, because the control server doesn’t have a
solid method of verifying the data integrity that the drug infusion pump sends. That
means the control server might be vulnerable to man-in-the-middle attacks, in which an
attacker modifies the data sent to the control server and provides the server with
falsified readings. If the control server bases its actions on the falsified readings, this
attack might directly affect the patients’ health and safety.

The control server might enable repudiation because it uses world-writeable logs,
which any system user is capable of overwriting, to monitor its actions. These logs files
can be subject to insider tampering by an attacker to hide certain operations.

Regarding information disclosure, the control server unnecessarily sends sensitive
patient information to the update server or drug infusion pump. This information could
range from vital measurements to personal information.



In terms of denial of service, adversaries in close proximity to the control server can
jam the server’s signal and disable any kind of wireless communication with the drug
infusion pump, rendering the whole system useless.

Additionally, the control server might be vulnerable to elevation of privilege if it
inadvertently exposes API services that allow unauthenticated adversaries to perform
high-privileged functionalities, including altering the drug infusion pump settings.

The Drug Library

The drug library is the system’s main database. It holds all information related to the
drugs the pump uses. This database can also control the user management system.

In terms of spoofing, users interacting with the database through the RUI or pump
might be able to execute actions by impersonating other database users. For instance,
they might exploit an application vulnerability to abuse the lack of controls for the user’s
input from the RUL.

The drug library might be vulnerable to tampering if the library fails to properly
sanitize user input from the RUI. This could lead to SQL injection attacks, which allow
attackers to manipulate the database or execute untrusted code.

The database could allow repudiation if logs for user requests originating from the
drug infusion pump store the request’s user agent in an unsafe manner, allowing
adversaries to pollute the database’s log files (for example, by using line-feed characters
to insert fake log entries).

When it comes to information disclosure, the database might contain functions or
stored procedures that perform external requests (such as DNS or HTTP requests). An
adversary could abuse these to exfiltrate data using an out-of-band SQL injection
technique. This method is extremely useful to attackers who are able to perform only
blind SQL injections, in which the server’s output doesn’t contain the data resulting
from the injected query. For example, adversaries could smuggle out sensitive data by
constructing URLs and placing this data in the subdomain of a domain that they control.
Then they can supply this URL to one of these vulnerable functions and force the
database to perform an external request to their server.

Denial of service attacks might also occur in cases when an adversary abuses
components that allow complex queries. By forcing the components to perform
unnecessary computations, the database might come to a halt when no more resources
are available to complete the requested query.

Additionally, when it comes to elevation of privilege, certain database functions
might allow users to run code with the highest privileges. By performing a specific set of
actions through the RUI component, the user might be capable of calling these functions
and escalating their privileges to that of a database superuser.

The Operating System

The operating system receives input from the control server service, so any threats to it
derive directly from the control server. The operating system should have integrity



checking mechanisms and a baseline configuration that incorporates specific security
principles. For example, it should protect data-at-rest, enable update procedures, enable
network firewalls, and detect malicious code.

The component could allow spoofing if an adversary is able to boot their own custom
operating system. This custom operating system could deliberately lack support for
necessary security controls, such as application sandboxing, filesystem permissions, and
role-based access control. An attacker can then study the application and extract vital
information that otherwise wouldn’t be available due to the security controls.

As for tampering, if adversaries have local or remote access to the system, they could
manipulate the operating system. For example, they could change the current security
settings, disable the firewall, and install a backdoor executable.

Repudiation vulnerabilities might be present on the operating system if the system
logs are stored only locally and if a high-privileged adversary could alter them.

With respect to information disclosure, error and debugging messages might reveal
information about the operating system that could help adversaries exploit the system
even further. Messages might also include sensitive patient information, which could
violate compliance requirements.

The component might be susceptible to denial of service attacks if an adversary
triggers an unwanted system restart (during an update process, for example) or
deliberately shuts down the system, causing the whole system to halt its operation.

Attackers could achieve elevation of privilege if they abuse vulnerable functionalities,
software designs, or misconfigurations of high-privileged services and applications to
obtain elevated access to resources that should be available only to a superuser.

The Device Components’ Firmware

Next, let’s consider all the device components’ firmware, such as the CD/DVD drive,
controllers, display, keyboard, mouse, motherboard, network card, sound card, video
card, and so on. Firmware is a kind of software that provides specific low-level
operations. It’s usually stored on the components’ nonvolatile memory or loaded into
the components by a driver during the initialization. The device’s vendor typically
develops and maintains its firmware. The vendor should also sign the firmware, and the
device should verify this signature.

The component might be susceptible to spoofing if the attackers can exploit logic bugs
that downgrade the firmware to older versions containing known vulnerabilities.
Adversaries could also install custom firmware that pretends to be the latest available
version from the vendor when the system requests an update.

The attackers might succeed in tampering with the firmware by installing malware on
it. This is a common technique for advanced persistent threat (APT) attacks, in which
the adversary attempts to remain undetected for an extended period and survive an
operating system reinstallation or hard disk replacement. For example, a hard disk
firmware modification containing a Trojan horse could allow users to store data in
locations that won’t be erased even if they format or wipe the disk. IoT 